首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
鹿洼煤矿13上14工作面“两带”高度观测   总被引:1,自引:0,他引:1  
根据鹿洼煤矿13上14工作面具体地质条件,在对采动覆岩破坏发育规律进行合理预测的础上,通过选择可靠的井下"两带"高度观测方法,得出了13上14工作面采动覆岩导水裂缝带发育高度为31-21m,裂采比为14.9,由此导出了鹿洼煤矿3煤层开采覆岩导水裂隙带高度预计公式为:H裂=14.9M(M为采高).  相似文献   

2.
谢桥煤矿1201(3)工作面覆岩导水裂缝带高度预测   总被引:3,自引:0,他引:3  
煤层采出后,采空区周围的岩层将产生位移、变形、破坏,直至形成导水裂缝带。导水裂缝带一旦波及煤层上覆水体,则会导致水体的水流入或溃入井下,直接威胁煤矿生产。本文针对谢桥煤矿覆岩类型和开采技术条件,参照1121(3)工作面覆岩导水裂缝带高度的实测结果,反演得出谢桥煤矿覆岩破坏的岩体力学参数,建立了数值模拟模型;通过对模拟结果的分析,得出了各影响因素对导水裂缝带高度的影响程度,归结出预测1201(3)工作面覆岩导水裂缝带高度的计算式。为谢桥煤矿预测开采上限提供了重要依据,并且对覆岩破坏的理论研究以及工程实践都具有一定的参考价值。  相似文献   

3.
针对整合矿井上覆不明采空区工作面易发生老空水害的工程难题,以重组整合矿井胜利煤矿太原组10号煤层开采为例,运用力学模型分析、经验公式计算以及数值模拟方法,综合分析研究了10号煤层及上覆6号、2号煤层开采后的导水裂隙带高度、底板破坏带深度情况。研究结果表明:10号煤层及上覆6、2号煤层开采后的最大导水裂隙带高度分别是54.94、30.49、33.67 m,最大底板破坏带深度分别是12.24、3.12、1.25 m,基于其相对空间位置,判断出2号煤层采空区积水不会影响10号煤层开采,而6号煤层采空区积水会直接进入10号煤层,对10号煤层安全生产造成重大影响;利用调查资料、地面物探、井下物探相结合的方法对6号煤层不明采空区积水范围进行了精准确定,为后续钻探放水提供了依据,为相似工程条件下上覆采空区突水危险性分析及积水范围探测提供借鉴。  相似文献   

4.
为了保证煤矿的安全生产,采用钻孔冲洗液漏失量观测和钻孔彩色电视系统2种方法,对何家塔煤矿5-2煤层采后不同时期覆岩导水裂缝带高度特征进行了综合探测;同时开展了厚煤层分层开采及厚煤层放顶煤开采统计公式法与实测结果的差异性特征分析及其适应性论述;并对采后不同时期覆岩破坏裂缝带高度演化特征进行了分析。研究结果表明:何家塔煤矿5-2煤层采后覆岩破坏导水裂缝带高度为74.33 m,裂采比为21.24。厚煤层分层开采公式法和厚煤层放顶煤公式法计算结果与综合探测法实测结果相对误差分别为36.23%和7.62%。在没有现场实测数据的前提下,研究区覆岩破坏导水裂缝带高度可参考厚煤层放顶煤开采公式计算。停采时间相对较短情况下,覆岩导水裂缝带高度发育较大,裂缝规模较为明显,随着停采时间的推移,由于压实作用,覆岩导水裂缝高度会逐渐降低,裂缝规模逐渐减小。  相似文献   

5.
李友伟  张玉军  肖杰 《煤炭工程》2022,54(7):97-103
为了研究多煤层重复采动下覆岩破坏高度的发育规律,以公乌素煤矿三煤层开采为工程背景,通过现场实测、数值模拟研究方法,得到了单层开采和三层重复开采时16煤1604工作面覆岩导水裂缝带高度,采用3DEC数值模拟研究了单煤层开采及重复采动覆岩的破坏特征,理论分析了重复采动覆岩裂隙发育机理及裂缝带高度的计算方法。结果表明:钻孔冲洗液观测与钻孔窥视结合实测法更准确,公乌素16煤重复采动条件下,裂采比15.14,垮采比3.15|模拟显示采空区两侧裂隙发育明显且为离散裂隙,中部裂隙闭合,裂隙高度与实测较为接近|提出了3种不同程度的重复采动裂缝带发育高度的计算方法,为确定重复采动条件下覆岩裂隙发育高度提供理论依据。  相似文献   

6.
为研究近距离煤层上层煤开采后采空区积水对下层煤安全开采造成的影响,有必要对上层煤开采底板破坏深度及下层煤导裂带高度进行研究。结合凉水井煤矿现场实际情况,运用工作面底板注水试验方法对该矿4-2煤开采底板扰动深度进行研究。结果表明,底板由于煤层采动地板岩层在应力集中下产生首次破坏,破坏深度在15 m左右,之后底板由于顶板周期来压,底板破坏深度加深至16 m左右,为实际工程中极近距煤层的开采和防水方案确立提供依据。  相似文献   

7.
官庄河矿区3煤层采空区存有大量积水,采用钻孔冲洗液漏失量和导高观测仪注水漏失量观测法对11煤层开采形成的覆岩导水裂隙带发育高度进行了实测,实测结果表明导水裂隙带发育高度为44.1 m,是采高的16.3倍,并通过数值模拟计算方法对该结果进行了对比和验证。11煤层开采形成的导水裂隙带未发育至3煤层采空区,可进行保水开采。  相似文献   

8.
转龙湾煤矿首采工作面煤层埋深160 m左右,基岩厚度60~120 m,属于浅埋薄基岩开采。本文分析了转龙湾煤矿II-3煤层覆岩特征,井下现场探测了首采试验区的采动覆岩破坏导水裂缝带发育高度,采用有限差分数值仿真方法模拟了薄基岩浅埋煤层综放开采条件下的覆岩运移破坏过程。研究表明,采动覆岩塑性破坏区的形态经历了"马鞍形"—"拱(箱)形"的演化发育过程;随着采动空间的增大,采空区两端超前破坏裂隙扩展速度较中部变慢,最大导水裂缝带发育高度位于采空区中部,裂采比为20。  相似文献   

9.
《煤矿安全》2015,(Z1):22-25
为了研究在综放开采条件下覆岩导水裂隙带高度的发展规律,以焦坪矿一盘区1418工作面为地质原型,应用经验公式计算并结合现场实测数据、计算机数值模拟(FLAC3D有限差分软件和UDEC离散元软件)和物理相似材料模拟实验方法,对工作面4-2号煤层采动后造成的覆岩变形破坏情况进行分析,并对导水裂隙带发育高度进行预测。研究表明:该矿1418工作面综放开采巨厚煤层覆岩导水裂隙带高度为采厚的近26倍。  相似文献   

10.
针对某煤矿1301综放工作面开采受顶板砂岩、第四系松散含水层顶板水威胁的问题,为得到深部大采高综放工作面两带高度发育规律,采用FLAC3D数值模拟方法,研究覆岩在走向、倾向方向破坏演化规律。结果表明:覆岩导水断裂带高度达到106 m,冒落带高度达到49 m,导水断裂带已经波及到顶板砂岩含水层,开采3号煤层受顶板"三砂"水影响较严重,需要采前疏放顶板砂岩含水层。  相似文献   

11.
基于古书院矿煤层的实际地质资料,利用RFPA2D分析软件对采空区下15#煤层开采覆岩破坏进行了模拟,观察开采后15#煤层坚硬顶板的裂隙发育状况,研究采动覆岩中三带的发育高度,并对结果从采场上覆岩层移动破坏规律、15#煤层顶板位移及应力变化特征方面进行了分析。通过对15#煤层三带分布研究,编制矿井冒落带和导水裂隙带高度的等值线图,确定15#煤层的导水裂隙带最大发育高度,预测在15#煤层回采过程中,9#煤层采空区积水下渗的可能性。根据裂隙发育情况,结合顶板岩性,为15#煤建立抽放系统、治理瓦斯的论证提供依据。  相似文献   

12.
随着煤层开采深度的逐年增加,非充分采动工作面越来越多。导水裂缝带高度是实现保水开采的关键参数,但非充分采动工作面开采条件下导水裂缝带高度小于充分采动工作面。为进一步研究其原因,采用理论分析、相似模拟、数值模拟等方法研究了导水裂缝带高度影响因素的敏感性及其与工作面尺寸的关系,提出了覆岩破坏充分采动程度的定义及判别方法。结果表明:工作面尺寸对导水裂缝带高度的影响仅次于开采厚度。当工作面尺寸较小时,覆岩破坏不发育;当工作面尺寸增加到一定值时,覆岩破坏仅形成垮落带;当工作面尺寸继续增加时,覆岩破坏形成裂缝带且导水裂缝带高度随着工作面尺寸的增加而增加;当导水裂缝带高度发育至最大值后,导水裂缝带高度不再随工作面尺寸的增加而增加。覆岩破坏过程中仅形成垮落带的阶段定义为覆岩破坏的极不充分采动(即覆岩极不充分破坏);覆岩破坏过程中形成裂缝带且导水裂缝带高度随工作面尺寸增加而增加的阶段定义为覆岩破坏的非充分采动(即覆岩非充分破坏);导水裂缝带高度达到最大值且不再随工作面尺寸增加而增加的阶段定义为覆岩破坏的充分采动(即覆岩充分破坏)。导水裂缝带高度刚达到最大值时的工作面尺寸为工作面临界尺寸。当工作面尺寸小于工作面临界尺寸时,覆岩破坏为非充分采动;当工作面尺寸大于工作面临界尺寸时,覆岩破坏为充分采动。覆岩破坏充分采动程度的主要影响因素有工作面尺寸、开采厚度、开采深度、覆岩力学性质、覆岩结构特征和覆岩破断角。  相似文献   

13.
覆岩破坏充分采动程度定义及判别   总被引:1,自引:0,他引:1       下载免费PDF全文
郭文兵  娄高中 《煤炭学报》2019,44(3):755-766
随着煤层开采深度的逐年增加,非充分采动工作面越来越多。导水裂缝带高度是实现保水开采的关键参数,但非充分采动工作面开采条件下导水裂缝带高度小于充分采动工作面。为进一步研究其原因,采用理论分析、相似模拟、数值模拟等方法研究了导水裂缝带高度影响因素的敏感性及其与工作面尺寸的关系,提出了覆岩破坏充分采动程度的定义及判别方法。结果表明:工作面尺寸对导水裂缝带高度的影响仅次于开采厚度。当工作面尺寸较小时,覆岩破坏不发育;当工作面尺寸增加到一定值时,覆岩破坏仅形成垮落带;当工作面尺寸继续增加时,覆岩破坏形成裂缝带且导水裂缝带高度随着工作面尺寸的增加而增加;当导水裂缝带高度发育至最大值后,导水裂缝带高度不再随工作面尺寸的增加而增加。覆岩破坏过程中仅形成垮落带的阶段定义为覆岩破坏的极不充分采动(即覆岩极不充分破坏);覆岩破坏过程中形成裂缝带且导水裂缝带高度随工作面尺寸增加而增加的阶段定义为覆岩破坏的非充分采动(即覆岩非充分破坏);导水裂缝带高度达到最大值且不再随工作面尺寸增加而增加的阶段定义为覆岩破坏的充分采动(即覆岩充分破坏)。导水裂缝带高度刚达到最大值时的工作面尺寸为工作面临界尺寸。当工作面尺寸小于工作面临界尺寸时,覆岩破坏为非充分采动;当工作面尺寸大于工作面临界尺寸时,覆岩破坏为充分采动。覆岩破坏充分采动程度的主要影响因素有工作面尺寸、开采厚度、开采深度、覆岩力学性质、覆岩结构特征和覆岩破断角。  相似文献   

14.
刘明 《矿山测量》2021,49(5):8-11
文中通过对某矿第四系底部卵砾石层水文条件及12煤层覆岩结构分析,结合该矿覆岩导水裂缝带实测结果,参照厚煤层分层开采经验公式和其它矿区厚煤层分层开采实践及覆岩导水裂缝带实测成果,对该矿12煤层分层开采条件下覆岩导水裂缝带高度进行了预计,并最终确定了留设的防水煤岩柱尺寸。  相似文献   

15.
针对盖州煤业9号煤受到上覆3号煤层采空区积水威胁的问题,采用井下导水裂隙带高度观测仪和钻孔成像仪实测的相互验证方法,确定了9号煤层导水裂隙带高度。现场实测表明:1号钻孔测得的导水裂隙带高度为27.25 m,2号钻孔测得的导水裂隙带高度为28.8 m,再用钻孔成像进行验证,最终确定导水裂隙带高度为28.8 m,确保了采空积水区下采煤的安全可靠性。  相似文献   

16.
《煤矿安全》2016,(5):45-48
采用FLAC~(3D)数值模拟软件建立了大同矿区煤层群开采的数值模型,模拟研究了煤层群开采时覆岩导水断裂带的发育过程,分析了3-5~#煤层导水断裂带发育高度与煤厚、工作面长度的关系。模拟结果显示:坚硬顶板下近距离煤层群下行开采,随采动次数增加覆岩导水断裂带高度增加的幅度逐渐减小;随煤层厚度的增加,3-5~#煤导水断裂带高度增加,当煤厚13 m时,其增幅变大;随工作面长度的增加,3-5#煤导水断裂带高度增加,当工作面长度190 m时,导水断裂带增幅减小;煤厚为15 m时,将工作面长度缩短至180 m时可确保3-5~#煤的导水断裂不与15#煤采空区贯通。  相似文献   

17.
为分析多煤层开采覆岩破坏规律,以安盛煤矿2煤8201工作面、5煤8501工作面为工程背景,采用理论方法计算8501工作面单煤层开采覆岩导水断裂带高度,运用FLAC3D软件模拟分析多煤层开采覆岩破坏规律与导水通道发育特征。结果表明:导水断裂带理论高度为65.35m,占层间距的84.87%;多煤层开采条件下,距8501工作面切眼200 m位置处产生低应力区,垂直应力峰值约为6.2 MPa,较单独开采时减小了32.6%,该区域产生大面积塑性破坏区,超过层间距77 m,覆岩产生足够长的导水通道造成水害威胁。工程实践表明:对采空区积水进行疏放后,8501工作面已安全完成回采,未发生水害事故。  相似文献   

18.
为进行采动影响下煤层底板变形破坏规律的研究,建立底板破坏深度求解力学模型,依据关键层理论和弹性理论得到沿走向底板内支承压力传播规律,再借助FLAC3D数值模拟软件分析3煤底板破坏特征,将倾斜煤层底板采动最大破坏深度按照相关理论进行核算。研究表明:底板浅位置的岩层,垂直应力等值线变化梯度相对较大,形状为半椭圆形;工作面回采重新达到平衡后,煤层底板的主要破坏形式为剪切破坏,且3煤工作面采动底板破坏最大破坏深度在21 m左右,底板巷道塑性区无明显增加;滑移线理论计算出采空区底板最大屈服破坏深度为10.68 m,而3号煤底板巷道与3号煤层相距约30 m,3号煤层的开采几乎不会对底板巷道造成影响,计算结果与仿真模拟结论相近。  相似文献   

19.
周建军 《中州煤炭》2019,(7):162-164,170
为了研究矿井开采对煤层顶底板的影响,采用理论分析的方法,分析了矿井开采对煤层顶板的影响、矿井开采对煤层底板的影响,首先研究了矿井开采对顶板影响范围、计算了首采层开采对上覆岩层的塌陷范围;然后,研究了矿井开采对底板破坏范围,以新田煤矿4号煤层工作面为例,研究得出:采空区对上覆岩层影响形成的塌陷盆地最大边缘为采空区外9.748 m;1401工作面回采对底板最大破坏深度71 m。研究为类似工程条件的开采对煤层顶底板影响范围提供理论依据。  相似文献   

20.
针对慈林山煤矿的涌水问题,通过地质勘探研究煤矿水文地质条件,使用大井法和水文地质比拟法的科学计算方法预测矿井涌水量。结果表明,慈林山煤矿9号煤层开采的主要充水水源是第四系松散层潜水含水层和3号煤采空区积水,导水通道是煤层开采形成的垂向导水裂缝带。15号煤开采时主要充水水源为K2灰岩水和3号煤、9号煤采空区积水,导水通道是煤层开采形成的垂向导水裂缝带、断层及陷落柱。预测9号煤开采时正常涌水量为62.5m3/h,最大涌水量为137.5m3/h;15号煤开采时正常涌水量为97.0m3/h,最大涌水量为142.5m3/h。鉴于采空区积水具有突发性强、水量大、来势猛、破坏性大且有腐蚀性等特点,采用井下疏放水方案对采空区积水进行防治,为采掘工作安全开展提供保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号