首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2022,48(4):4886-4896
Recent studies show that the chemical composition and shape of magnetic nanoparticles (NPs) play an important role in their properties. In particular, the bimagnetic NPs display useful and in many cases, more interesting properties than single-phase NPs. In this work, we prepared Fe3O4 and CoFe2O4 cube-like NPs and bimagnetic hard/soft (CoFe2O4/Fe3O4) and soft/hard (Fe3O4/CoFe2O4) nanocomposites (core/coating) using a facile and eco-friendly co-precipitation method that allows the synthesis of the cube-like NPs at temperatures near room temperature. The phase purity and the crystallinity of the NPs with a spinel structure were confirmed by the X-ray diffraction and infrared spectra techniques. Transmission electron microscopy (TEM) images revealed that the NPs have a cubic-like shape with an average dimension of 20 nm. Energy dispersive X-ray analysis, Mössbauer spectroscopy and SQUID magnetic measurements indicated the co-existence of Fe3O4 and CoFe2O4 phases in nanocomposites. In addition, the hysteresis loops exhibited a single-phase behavior in the nanocomposites that indicates there is a good exchange-coupling interaction between the hard and soft magnetic phases. The CoFe2O4/Fe3O4 nanocomposites presented a larger saturation magnetization than the CoFe2O4 NPs that is effective for their use in magnetic hyperthermia. Finally, we studied the hyperthermia properties of samples in an alternating magnetic field with a frequency of 276 kHz and field amplitude of 13.9 kA/m. Our results showed that magnetic hyperthermia efficiency simultaneously depends on the composition of samples along with magnetic anisotropy and saturation magnetization.  相似文献   

2.
《Ceramics International》2022,48(16):22767-22781
AC induction heating mediated magnetic fluid hyperthermia of superparamagnetic nanoparticles (MNPs) is being widely explored for localized thermo-therapy of tumours. One of the primary hindrances for rapid adaptation of this technique is the loss of heating efficiency when the MNPs are placed within the viscous tissue medium, which necessitates undesired increase in MNP concentrations or exposure time during practical applications. With an objective to mitigate this, here we report the viscosity independent magnetic hyperthermia properties of biocompatible ultrafine (average size ~ 2.5 nm) chitosan-coated superparamagnetic CoFe2O4 MNPs synthesized using a low-cost co-precipitation technique. The presence of the chitosan coating is confirmed from Fourier transform infrared and X-ray photoelectron spectroscopy. The superparamagnetic nature of the synthesized MNPs at 300 K is confirmed from Mössbauer spectroscopy, isothermal and temperature dependent magnetization studies. Experimental findings indicate a higher field-induced heating efficiency for the chitosan-coated MNPs due to superior colloidal stability. The ultrafine size, combined with higher anisotropy energy density, results in viscosity independent Nèel relaxation-dominated magneto-thermal energy conversion for the CoFe2O4 MNPs. Experimental results reveal negligible loss of heating efficiency due to partial abrogation of Brownian relaxation when the chitosan-coated MNPs are immobilized in a tissue-equivalent agar medium, which is beneficial for practical applications. The heating efficiency of ~72.1 ± 2.8 W/gFe (at 33.1 kA/m and 126 kHz), obtained in the present study for the chitosan-coated MNPs, is higher than the previously documented values for ultrafine CoFe2O4 MNPs, which is useful for reducing the exposure time during practical applications. Further, the chitosan coating rendered the ultrafine CoFe2O4 MNPs bio-compatible against L929 cell line. The satisfactory magnetic fluid hyperthermia efficiency, negligible room temperature coercivity, retention of the field-induced heating efficiency in tissue-equivalent agar medium due to Nèel-dominated relaxation dynamics and superior biocompatibility, make the chitosan-coated ultrafine CoFe2O4 MNPs an attractive candidate for practical MFH applications.  相似文献   

3.
Cobalt ferrite magnetic nanoparticles were synthesized and developed by a modified Pechini method using iron nitrate, cobalt nitrate, ethylene glycol (EG), and sucrose with different volumes of lemon juice (10, 20, 30, 40, 50, 60, and 70 ml) as the source of chelating agent as well as nonmagnetic elements such as Ca and Mg ions. The XRD patterns confirmed that all samples synthesized by different contents of extracted lemon juice had a cubic crystal structure with single-phase spinel. Scanning electron microscopy revealed that cobalt ferrite nanoparticles had a semi-spherical morphology. Also, the vibrating sample magnetometer indicated that the saturation magnetization of CoFe2O4 nanoparticles prepared with different values of extracted lemon juice increased from 18.6 emu/g for 10 ml extracted lemon juice to 75.7 emu/g for 50 ml extracted lemon juice, after which the saturation magnetization diminished. Afterwards, the CoFe2O4 nanoparticles were coated with polyethylene glycol (PEG) and doxorubicin (DOX) drugs, whereby drug delivery was detected at different pH levels. The CoFe2O4-PEG-DOX nanocomposite could release doxorubicin by more than 42% at pH = 5.4 in 75 h.  相似文献   

4.
《Ceramics International》2022,48(14):20315-20323
NiCuZn ferrite is a material suitable for low-temperature co-fired ceramic (LTCC) technology due to its high permeability and relatively low sintering temperature. The main research questions regarding NiCuZn ferrites are focused on reducing the sintering temperature of the NiCuZn ferrites to achieve compatibility with the Ag electrodes and improve their electromagnetic properties. In this study, the electromagnetic properties of NiCuZn (Ni0.29Cu0.14Zn0.60Fe1.94O3.94) ferrites were enhanced by doping with Bi2O3, resulting in a reduction of the sintering temperature to 925 °C. The findings show that a suitable concentration of Bi2O3 doping could promote the growth of grains and result in NiCuZn ferrites with denser microstructures sintered at a low temperature. Furthermore, adding 0.30 wt% Bi2O3 to NiCuZn ferrite enhances its electromagnetic properties, such as a high real part of permeability (~937.6 @ 1 MHz), high saturation magnetization (~60.353 emu/g), low coercivity (~0.265 kA/m), and excellent dielectric constant (~14.71 @ 1 MHz). In addition, the chemically compatible Ag electrodes suggest that the NiCuZn +0.30 wt% Bi2O3 ceramics may be acceptable for LTCC technology.  相似文献   

5.
A 3D heterometallic oxalate-bridged coordination polymer [CuIIFeII2(H2O)(terpy)(C2O4)3]n (terpy = 2,2′:6′,2″-terpyridine) ( 1 ) was investigated both as photocatalyst for the organic dye removal and as a single-source precursor for the preparation of the copper ferrite (CuFe2O4) nanocrystals by thermal processing. The dual functionality of 1 was supported by the degradation of aqueous solutions of rhodamine B (RhB) and methylene blue (MB) solutions under visible (Vis) and ultraviolet (UV) light irradiation, powder X-ray diffraction data collection at room temperature, and the optical and scanning electron microscopy analyses. A close inspection of the X-ray diffraction patterns unveiled qualitative and quantitative information on the phase composition obtained after the single-source molecular precursor route to spinel oxide. By optimizing the temperature levels and setting the controlled heating rate at 6 h of holding time, the phase composition of thermal processing of 1 was evaluated—thermal treatment of 1 at 950°C for 6 h and a heating/cooling rate of 10°C min−1 resulted in the formation of solely tetragonal spinel phase of CuFe2O4, whereas the formation of both tetragonal and cubic CuFe2O4 phases was observed at 950°C by the heating rate of 30°C min−1. To obtain the high-temperature cubic CuFe2O4 oxide, compound 1 was heated and then quenched at 925°C, which led to the formation of the cubic spinel ferrite as the main crystalline oxide phase. Moreover, the photocatalytic properties of the t-CuFe2O4 spinel were investigated under the same conditions as for 1 . The optical bandgap energies were estimated from UV–Vis absorption spectra for both metal oxide and precursor powder.  相似文献   

6.
《Ceramics International》2021,47(21):30287-30297
In the present work, magnetic CuFe2O4 nanoparticles were synthesized through a sol-gel combustion. The synthesized CuFe2O4 were coated with mesoporous SiO2. The synthesized CuFe2O4@SiO2 nanocomposite was investigated for drug release and hyperthermia applications. The products were studied by X-ray diffraction analysis, Fourier-transform infrared spectroscopy, simultaneous thermal analysis, Brunauer-Emmett-Teller surface area, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometer. TEM images showed the formation of silica coating with a thickness of 14 nm around copper ferrite. The surface area of the samples increases from 2.59 to 199.2 m2/g after the surface modification of ferrites nanoparticles with silica. The CuFe2O4@SiO2 exhibited high ibuprofen loading and controlled drug release. These improvements resulted from the nanocomposite's mesoporous structure and high surface area. Coating CuFe2O4 nanoparticles with mesoporous silica reduced the cytotoxicity and improved drug release properties. However, this coating reduced the hyperthermia ability. The formed CuFe2O4@SiO2 nanocomposites show high potential for simultaneous drug release and hyperthermia applications with prospective use for biomedical applications.  相似文献   

7.
The current paper focuses on synthesizing a high-efficiency microwave absorber via incorporating the nanofillers of graphene oxide-polyaniline (GO-PANI), barium-strontium titanate (BST), and soft-hard ferrite within the polyester matrix. The nanocomposite magnets of (Ba0.5Sr0.5Fe12O19)1-x hard/(CoFe2O4)x soft (x = 0.2, 0.5, and 0.8) were prepared using sol-gel auto-combustion method. The GO-PANI and BST were successfully synthesized by in situ polymerization and improved polymerization, respectively. The phase structure, chemical structure, morphology, and microwave absorption properties of the synthesized nanocomposites were characterized by X-ray diffractometer (XRD), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM), vector network analyzer (VNA) techniques, respectively. The results showed that the synergistic effects of the combination of dielectric (BST), conductive (GO-PANI), and magnetic materials (hard-soft ferrites) provided the reflection loss values of less than ?20 dB (>99% absorption) in the X-band region. The minimum reflection loss of ?35 dB (>99.99% absorption) was obtained by the optimal formulation including (Ba0.5Sr0.5Fe12O19)0.2 (CoFe2O4)0.8, and the weight ratio of 1: 2 for both BST/soft-hard ferrite and hard-soft ferrite + BST/GO-PANI with the thickness of 1 mm. According to the results, the thickness factor plays a key role in improving the impedance matching. Consequently, the proposed nanocomposite can be employed as a novel kind of microwave absorbers with good impendence matching and high absorption.  相似文献   

8.
Effects of ferrite materials as supports (CoFe2O4, NiFe2O4, and Fe3O4) on nano-TiO2 were elucidated by their use in the oxidation of methylene blue. These photocatalysts, which were synthesized by co-precipitation, were characterized by XRD, SEM, EDS and VSM. The crystalline phase of TiO2 onto magnetic MFe2O4 was formed by anatase and rutile. TiO2/CoFe2O4 exhibited the strongest magnetic property of the prepared catalysts, and the photocatalytic efficiencies followed the order TiO2/CoFe2O4 > TiO2/NiFe2O4 > TiO2/Fe3O4. MB decolorization was enhanced with the amount of TiO2 on the photocatalyst, and was moderately affected by the extent of structural distortion of ferrite supports.  相似文献   

9.
《Ceramics International》2021,47(20):28240-28251
The gadolinium substituted cobalt ferrite (CoFe1.9Gd0.1O4) nanoparticles and CoFe1.9Gd0.1O4/Polyaniline (PANI) microwave absorber were synthesized by sol-gel auto combustion technique using lemon juice and in-situ polymerization method respectively. X-ray patterns confirmed the formation of single phase cubic structure. The crystallite size of the synthesized CoFe1.9Gd0.1O4 nanoparticles are within the range of 15–68 nm. The saturation magnetization of CoFe1.9Gd0.1O4 ferrite/Polyaniline (PANI) composite was reduced due to nonmagnetic PANI. The reflection loss for microwave absorbing properties of CoFe1.9Gd0.1O4 ferrite nanoparticles and CoFe1.9Gd0.1O4/PANI nanocomposite were investigated and minimum value of reflection loss was found to be −16.85 dB at 13.52 GHz for nanoparticles of thickness 2.5 mm and −25.59 dB at 11.92 GHz for CoFe1.9Gd0.1O4/PANI nanocomposite of thickness 2.0 mm) respectively. The prepared samples have low density, high surface resistivity and enhanced attenuation constant. The nanocomposite exhibits excellent absorption performance over a broad band range in the radar band.  相似文献   

10.
《Ceramics International》2020,46(17):26521-26529
Rare earths (Res) doped Mn spinel nanoferrites with nominal composition MnR0.2Fe1·8O4 (REs = Tb, Pr, Ce, Y and Gd) were synthesized using sol gel method. FTIR, XRD and FESEM were employed to evaluate the structure, phase, vibrational bands, morphology, grain size and microstructure respectively. VSM was employed to investigate the magnetic features of the Mn nanoferrite and REs doped Mn nanoferrites. XRD confirmed the single-phase cubic structure of Mn nanoferrite whereas tetragonal phase was observed for all REs doped Mn nanoferrites. Unit cell software was used to determine the structural features such as lattice parameter, cell volume, ‘da’, ‘db’, ‘dc’ and ‘dv’ respectively. FTIR results demonstrated the absorption peaks of Mn and REs doped Mn ferrite at 647-674 cm−1. FESEM results depicted the irregular shapes of the particles with large agglomerations in the prepared samples. The grain size evaluated by LIM (line intercept method) found in the range of 94 to 213 nm respectively. Saturation magnetization was increased from 1.332 to 38.097 emu/g whereas remanence was increased from 1.096 to 25.379 emu/g respectively. In addition, other magnetic parameters such as initial permeability, magnetic anisotropy and magnetic moments were also increased. Moreover, Y–K angles showed significant response with REs doping in Mn ferrites. Furthermore, high frequency response and switching field distribution (SFD) of Mn ferrite and REs doped Mn ferrites were also determined. It is found that Y doped Mn ferrite depicted better high frequency and SFD response as compared to Mn ferrite and REs doped Mn ferrites. The coercivity of all these pure Mn ferrite and rare earth's substituted Mn ferrites (425–246 Oe) was higher as compared to the pure Mn and yttrium substituted Mn ferrite (107–217 Oe. Therefore, it was suggested that Y doped Mn ferrite was more suitable candidate for switching, and high frequency absorption applications in microwave regime.  相似文献   

11.
《Ceramics International》2020,46(11):18391-18412
Ceramic-magnetic nanoparticles (CMNPs) are attracting attention due to their various applications, especially in biomedical industries. Among them, spinel ferrite CMNPs have received considerable deliberations among different spinel metal oxides due to their fascinating characteristics. Spinel ferrite CMNPs are used for enhancement of the applicability of CMNPs without affecting the intrinsic advantages of iron oxide CMNPs. Spinel ferrites with doping agents have useful electrical and magnetic properties in various fields. Moreover, the replacement of metallic atoms in ferrites is promising to manipulate physical characteristics and improve their performance. Among different spinel ferrites, CoFe2O4 nanoparticles are the most investigated CMNPs. Furthermore, they are used as permanent magnets, magnetic recorders in high-density and micro-wave devices, and magnetic fluids. This study reviews the CoFe2O4 nanoparticles doped with various elements and their applications in various fields.  相似文献   

12.
《Ceramics International》2022,48(3):3833-3840
Ca-doped Ni–Mg–Mn spinel ferrites with compositions of Ni0·5Mg0·3Mn0.2CaxFe2-xO4 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) were prepared via sol-gel auto-ignition technique. TGA/DTA, FTIR, XRD, FESEM, and VSM were employed to evaluate the thermal, spectral, structural, morphological, and magnetic features of Ca-doped Ni–Mg–Mn spinel ferrites. TGA/DTA curves show the weight loss in the sample. This weight loss was attributed to the oxidation and decomposition of the sample contents at a temperature of 500 °C. XRD reveals a single-phase structure of the Ni–Mg–Mn nano ferrites. A single-phase orthorhombic structure was confirmed for Ca-doped Ni–Mg–Mn ferrites. Structural parameters such as lattice parameter, ‘da’, ‘db’, ‘dc’, and ‘dv’ were evaluated using unit cell software. The absorption peaks at 427 to 538 cm?1 confirmed the spinel structure, which was evaluated using FTIR. FESEM analyses showed that the agglomerations increased with the doping of Ca in Ni–Mg–Mn ferrites. Remanence, Y–K angles, saturation, coercive force, magnetic squareness, magnetic moment, and anisotropy constant were determined for Ca-doped Ni–Mg–Mn spinel ferrite samples. It is noticed that saturation increases from 29.157 to 51.322 emu/g, whereas remanence increased from 5.34 to 9.40 emu/g, respectively. The permeability, anisotropy constant, and magnetic moments were also found to increase with Ca doping. However, the Y–K angles increased with Ca concentration in Ni–Mg–Mn nano ferrites. In addition, the switching field distribution (SFD) and high-frequency response of all the Ca-doped Ni–Mg–Mn samples were also evaluated. Ca-doped Ni–Mg–Mn samples are suggested to be suitable for switching, filters, inductors, and microwave absorption applications because of the superparamagnetic nature of the prepared spinel ferrites.  相似文献   

13.
《Ceramics International》2022,48(10):13541-13550
Due to their strong magnetic dissipation and low cost, ferrites were one of the first generations of microwave absorbers. However, ferrites also have some drawbacks, such as a low natural resonance frequency (fr), a lack of dielectric loss, and high density. In order to overcome these drawbacks and improve the microwave dissipation features of ferrites, we successfully prepared CoFe2O4 samples with flower-like and crochet ball-like morphologies (named as M1 and M2 samples, respectively). Structural and optical properties were studied by XRD, FTIR, and UV–Vis light absorption. The microwave performance of CoFe2O4 was significantly improved with the reflection loss (RL) of M2 of ?40 dB. Furthermore, M1 and M2 samples achieved an ultra-wide effective absorption bandwidth (EAB) of 13 and 12.5 GHz, respectively. It is worth noticing that the EAB of M1 was one of the largest EABs for CoFe2O4 that has been reported so far. The excellent microwave dissipation of M1 and M2 samples in the 2–18 GHz frequency range was due to the enhancement of ferrite fr to the high-frequency range and the introduction of dielectric loss to achieve impedance matching. The flower-like and crochet ball-like morphologies with many pores of M1 and M2 also resolved the high-density issue of CoFe2O4. With the relatively good values of RL and EAB combined with low filler loading, thin thickness, and low density, M1 and M2 samples could be expected to be promising microwave absorbers for practical applications.  相似文献   

14.
The preparation, structural, microstructural, dielectric, and low temperature magnetic properties of MgxNi1?xFe2O4 (x = 0, 0.17, 0.34, 0.50, 0.66, 0.83, 1) ferrites synthesized by using a self‐combustion sol–gel method is presented. Good insulating properties were found for all the compositions at high frequencies (kHz and MHz range), which might drive the present ceramics as interesting for RF/microwaves applications. By increasing the Mg2+ concentration, the total resistivity strongly increases (from ~106 Ωm for the Ni ferrite to 109 Ωm for the Mg ferrite), corresponding to conductivities in the range 10?9–10?6 S/m at f = 1 Hz. Typical ferrimagnetic character with a small coercivity and saturation magnetization in the range (30–50) Am2/kg, which slightly decreases with increasing the Mg content, were found. On the basis of the combined results from the infrared spectroscopy and XRD analysis, it was shown that the magnetic properties depend on the Mg2+ ions distribution on the octahedral and tetrahedral sites and the experimental saturation magnetization allowed to compute the cation distribution for the MgxNi1?xFe2O4 ferrites.  相似文献   

15.
Using a one‐step hydrothermal method and at different stirring speeds (Vs), we have synthesized different types of CoFe2O4‐based magnetic nanocrystalline samples. With increasing Vs, the sample changes from a nanocomposite of CoFe2O4/Co0.7Fe0.3 (CFO/CF) to single‐phase CoFe2O4 (CFO). The maximum magnetization, 88.9 emu/g, and coercivity, 3010 Oe, were obtained when Vs = 0. As Vs increases, the saturation magnetization Ms decreases, because the amount of soft magnetic CF phase decreases. A clear enhancement in the remanence, Mr, was observed, with the maximum Mr/Ms = 0.67; the coercivity Hc also exhibits a local maximum for the sample with Vs = 200 r/min. These trends can be explained well by the interplay between dipolar interaction, magnetocrystalline anisotropy, and shape anisotropy. The stirring speed also influences the impedance of the materials; the related mechanism is discussed.  相似文献   

16.
The cobalt nickel ferrite (Co1‐xNixFe2O4 x = 0–1.0) nanoparticles were synthesized by a hydrothermal method. Effects of nickel content and organic template on the microstructure and magnetic property of the nanoparticles were studied. The experimental results indicate that Ni2+ substitution for Co2+ and special synthesis technique leads to obvious change in microstructure and magnetic property of the ferrites. The ferrites show nonlinear variations in the saturation magnetization and the coercivity with nickel substitution, which are explained by shape anisotropy and supernormal cation distribution. The organic template also leads to variation in the microstructure and properties of the nanoparticles.  相似文献   

17.
《Ceramics International》2017,43(3):3284-3291
Silver-cobalt ferrite nanocomposites (Ag-CoFe2O4) were synthesized through wet ferritization process and self-propagating combustion method. The structure, morphology, surface chemistry and magnetic properties of the nanocomposites were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). X-ray diffraction patterns confirmed the formation of CoFe2O4 and Ag nanoparticles with cubic symmetry. The average crystallite size of CoFe2O4 by wet ferritization ranged between 60 Å and 87 Å; for those obtained by self-propagating combustion was in the range 232–290 Å. SEM micrographs revealed different morphological features of nanocomposites. Ag-CoFe2O4 obtained by wet ferritization exhibited typical superparamagnetic behaviour. The antimicrobial and anti-biofilm properties of all silver-cobalt ferrites were evaluated. The results revealed that the Ag-CoFe2O4 nanocomposites exhibited good microbicidal and anti-biofilm features.  相似文献   

18.
The optical properties of multi-functionalized cobalt ferrite (CoFe2O4), cobalt zinc ferrite (Co0.5Zn0.5Fe2O4), and zinc ferrite (ZnFe2O4) nanoparticles have been enhanced by coating them with silica shell using a modified Stöber method. The ferrites nanoparticles were prepared by a modified citrate gel technique. These core/shell ferrites nanoparticles have been fired at temperatures: 400°C, 600°C and 800°C, respectively, for 2 h. The composition, phase, and morphology of the prepared core/shell ferrites nanoparticles were determined by X-ray diffraction and transmission electron microscopy, respectively. The diffuse reflectance and magnetic properties of the core/shell ferrites nanoparticles at room temperature were investigated using UV/VIS double-beam spectrophotometer and vibrating sample magnetometer, respectively. It was found that, by increasing the firing temperature from 400°C to 800°C, the average crystallite size of the core/shell ferrites nanoparticles increases. The cobalt ferrite nanoparticles fired at temperature 800°C; show the highest saturation magnetization while the zinc ferrite nanoparticles coated with silica shell shows the highest diffuse reflectance. On the other hand, core/shell zinc ferrite/silica nanoparticles fired at 400°C show a ferromagnetic behavior and high diffuse reflectance when compared with all the uncoated or coated ferrites nanoparticles. These characteristics of core/shell zinc ferrite/silica nanostructures make them promising candidates for magneto-optical nanodevice applications.  相似文献   

19.
Three different spinel metal oxide catalytic systems including NiFe2O4, CuFe2O4 and CoFe2O4 were synthesized using co-precipitation technique and their catalytic activities were compared to each other in α-arylation of oxindole derivatives under the optimized reaction conditions. Both nickel ferrite and copper ferrite magnetic nanoparticles show approximately the same behavior in these reactions but cobalt ferrite ones indicate slightly different properties and were not as good as the other two catalysts. These superparamagnetic catalysts allowed that α-arylation of different types of oxindoles will occur in high yields under mild conditions and at very short times.  相似文献   

20.
Hexagonal structure magnetoplumbite ferrites have revealed a higher dispersion frequency than that of nickel ferrites because of the magnetoplumbite's magnetic anisotropy. The magnetoplumbite ferrite densification temperature always exceeds 1000 °C and the initial low temperature firing permeability of magnetoplumbite ferrites with added glass is too low (μi = 2–4). Therefore, it is desirable to develop a material that has a higher permeability at above 300 MHz and can be densified at temperatures below 900 °C. The Bi2O3–B2O3–ZnO–SiO2 (BBSZ) glass addition effects on the densification and magnetic properties of Co2Y–NiCuZn ferrite composites with various Co2Y/NiCuZn ferrite ratios were investigated. The densification of Co2Y–NiCuZn ferrite composites was enhanced by the addition of glass at low sintering temperatures (<900 °C) due to the liquid phase sintering. Co2Y–NiCuZn ferrite composites with 4 wt% BBSZ glass sintered at 900 °C show a relative density above 90%, a high-initial-permeability of 5–6, a quality factor of above 30 in the 200–300 MHz frequency and a resonance frequency above 1 GHz, which can be used in high frequency multilayer chip inductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号