首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
This paper describes an 11-Gb/s CMOS demultiplexer with redundant multi-valued logic. The proposed circuit receives serial binary data which is converted to parallel redundant multi-valued data. The converted data are reconverted to parallel binary data. By the redundant multi-valued data conversion, the redundant multi-valued logic makes it possible to achieve higher operating speeds than that of a conventional binary logic. The implemented demultiplexer consists of eight integrators. The circuit is designed with a 0.35?µm standard CMOS process. The validity and effectiveness are verified through HSPICE simulation. The demultiplexer is achieved to the maximum data rate of 11-Gb/s and the average power consumption of 69.43?mW. This circuit is expected to operate at a higher speed than 11-Gb/s in the deep-submicron process of the high operating frequency.  相似文献   

2.
Yuan  J. Svensson  C. 《Spectrum, IEEE》1991,28(2):52-53
An improved clocking scheme and sharper circuit design and logic selection, which have yielded a five-to-tenfold increased in the speed of standard CMOS ICs, are discussed. The clocking strategy relies on a true single-phase clock, device sizes are varied to optimize their speed, and a precharged logic style reduces capacitive loads. The tradeoff is roughly a doubling of circuit area. The high-speed CMOS technique has been demonstrated experimentally, with good results. For example, ripple counters in 3 and 2 μm CMOS processes reached input frequencies of 400 and 750 MHz, respectively, or nearly 80 and 70% of the intrinsic speeds of these processes. Pipelined accumulators in 2 and 1.2 μm CMOS processes operated at up to 430 and 700 MHz clock frequencies, respectively. The data rate of an error correcting encoder designed for an optical fiber communication link was measured as 1.2 Gb/s, while the corresponding decoder was simulated at the same speed. In general, the circuits were found to be as robust as CMOS circuits designed in a conventional way  相似文献   

3.
Recent results on silicon bipolar ICs for lightwave communications in the multigigabits-per second (Gb/s) range are presented. These state-of-the-art results demonstrate the inherent speed difference between the different types of basic circuits. With the fastest ones (multiplexing and demultiplexing), bit rates above 10 Gb/s are achieved, even with production technologies. The technologies, as well as circuit and design principles to achieve such high operating speeds, are discussed, and some experimental examples are described in more detail. Moreover, the high-speed potential of present 1-μm silicon bipolar technologies is demonstrated by the simulation of carefully optimized communication ICs. With most of the basic circuits, bit rates above 10 Gb/s, and in some cases above 20 Gb/s, are achievable  相似文献   

4.
目前,10 Gb/s以上的数字光纤通信技术正在逐步得到应用,研究和开发光纤通信用的高速集成电路具有重要的意义。文章介绍了使用0.2μm GaAs HEMT工艺设计的1个10 Gb/s以上的光纤传输用2分频器。该分频器采用双锁存器串联结构,仿真结果和流片测试结果均表明该电路在10Gb/s的速率上可以完成2分频功能。  相似文献   

5.
This paper describes both a near term and a long term optical interconnect solution, the first based on a packaging architecture and the second based on a monolithic photonic CMOS architecture. The packaging-based optical I/O architecture implemented with 90 nm CMOS transceiver circuits, 1 × 12 VCSEL/detector arrays and polymer waveguides achieves 10 Gb/s/channel at 11 pJ/b. A simple TX pre-emphasis technique enables a potential 18 Gb/s at 9.6 pJ/b link efficiency. Analysis predicts this architecture to reach less than 1 pJ/b at the 16 nm CMOS technology node. A photonic CMOS process enables higher bandwidth and lower energy-per-bit for chip-to-chip optical I/O through integration of electro-optical polymer based modulators, silicon nitride waveguides and polycrystalline germanium (Ge) detectors into a CMOS logic process. Experimental results for the photonic CMOS ring resonator modulators and Ge detectors demonstrate performance above 20 Gb/s and analysis predicts that photonic CMOS will eventually enable energy efficiency better than 0.3 pJ/b with 16 nm CMOS. Optical interconnect technologies such as these using multi-lane communication or wavelength division multiplexing have the potential to achieve TB/s interconnect and enable platforms suitable for the tera-scale computing era.  相似文献   

6.
We present an integrated 2:1 multiplexer and a companion 1:2 demultiplexer in CMOS. Both integrated circuits (ICs) operate up to a bit rate of 40 Gb/s. The 2:1 multiplexer features two in-phase data inputs which are achieved by a master-slave flip-flop and a master-slave-master flip-flop. Current-mode logic is used because of the higher speed compared to static CMOS and the robustness against common-mode disturbances. The multiplexer uses no output buffer and directly drives the 50-/spl Omega/ environment. An inductance connected in series to the output in combination with shunt peaking is used to enhance the bandwidth of the multiplexer. Fully symmetric on-chip inductors are used for peaking. The inductors are mutually coupled to save chip area. Lumped equivalent models of both peaking inductors allow optimization of the circuit. The ICs are fabricated in a 120-nm standard CMOS technology and use 1.5-V supply voltage. Measured eye diagrams of both ICs demonstrate their performance.  相似文献   

7.
The authors have developed a highly uniform, InP-based high-electron-mobility transistor (HEMT) technology for high-speed optical communication system integrated circuits (ICs). Special attention was paid to obtaining a high yield and uniformity without degrading the high-frequency characteristics of these HEMTs. An InP etch-stopper layer was employed to control the gate recess etching. The authors successfully fabricated InAlAs-InGaAs HEMTs with a cutoff frequency of 175 GHz after interconnection, which is sufficiently high for application in 40-Gb/s optical communication ICs. The standard deviation of the threshold voltage was only 13 mV across a 3-in wafer. They also developed a fabrication process for a Y-shaped gate to maintain high uniformity, enabling us to integrate more than a thousand transistors with a 0.1-/spl mu/m-class gate length. With this technology, ICs with over 1000 transistors were successfully fabricated and operated at over 40 Gb/s. Furthermore, the authors fabricated a 2:1 multiplexer that had more than 200 transistors and reached an operating speed of 90 Gb/s. They have thus concluded that their InAlAs-InGaAs HEMT technology can be applied to fabricate high-speed ICs for optical communication systems.  相似文献   

8.
A feedback MOS current mode logic (MCML) is proposed for the high-speed operation of CMOS transistors. This logic is more tolerant to the threshold voltage fluctuation than the conventional MCML and is suitable for gigahertz operation of deep-submicron CMOS transistors. Using this logic, 8:1 multiplexer (MUX) and 1:8 demultiplexer (DEMUX) ICs for optical-fiber-link systems have been fabricated with 0.18-μm CMOS transistors. The ICs are faster than conventional CMOS MUX and DEMUX ICs and their power consumption is less than 1/4 of that of the conventional 10-Gb/s MUX and DEMUX ICs made using Si bipolar or GaAs transistors  相似文献   

9.
A multichannel transmitter (TX) and receiver (RX) chip set operating at 20 Gb/s (5 Gb/s×4 ch) has been developed by using 0.25-μm CMOS technology. To achieve multichannel data transmission and high-speed operation, the chip set features: (1) circuits for compensating the phase difference between multiple RX chips, which is due to data skew resulting from different lengths of transmission cables, and for compensating the frequency difference between the system clocks of the TX and RX chips; (2) a self-alignment phase detector with parallel output for a high-speed data-recovery circuit; and (3) a fully pipelined 8B10B encoder. At a 2.5-V power supply, the power consumption of the TX chip during 5-Gb/s operation is 500 mW and that of the RX chip is 750 mW. Four of these TX/RX chip sets can provide an aggregate bandwidth of 20 Gb/s  相似文献   

10.
Dynamic CMOS ternary logic circuits that can be used to form a pipelined system with nonoverlapped two-phase clocks are proposed and investigated. The proposed dynamic ternary gates do not dissipate DC power and have full voltage swings. A circuit structure called the simple ternary differential logic (STDL) is also proposed and analyzed, and an optimal procedure is developed. An experimental chip has been fabricated in a 1.2-μm CMOS process and tested. A binary pipelined multiplier has been designed, using the proposed dynamic ternary logic circuits in the interior of the multiplier for coding of radix-2 redundant positive-digit number. The structure has the advantages of higher operating frequency, less latency, and lower device count as compared with the conventional binary parallel pipelined multiplier. The advantages of the circuits over other dynamic ternary logic circuits are shown  相似文献   

11.
High-speed 2-b monolithic integrated multiplexer (MUX) and demultiplexer (DMUX) circuits have been developed using self-aligned AlGaAs/GaAs heterojunction bipolar transistors (HBTs) with improved high-speed performance. Both ICs were designed using emitter-coupled logic. The 2:1 MUX was composed of a D-type flip-flop (D-FF) merging a selector gate and a T-type flip-flop (T-FF). The 1:2 DMUX consisted of two D-FFs driven at a clock of half the rate of the input data. Error-free operation with a pseudorandom pattern was confirmed up to 10 Gb/s. The rise and fall times of the output signals of both ICs were 40 and 25 ps, respectively. HBT frequency dividers were used as inputs for both ICs in order to find the maximum operation speed. Although only a few test patterns were available, the maximum operation speeds of the MUX and DMUX were found to be around 15 and 19 Gb/s, respectively  相似文献   

12.
In this paper, an overview and assessment of high-performance receivers based upon Ge-on-silicon-on-insulator (Ge-on-SOI) photodiodes and Si CMOS amplifier ICs is provided. Receivers utilizing Ge-on-SOI lateral p-i-n photodiodes paired with high-gain CMOS amplifiers are shown to operate at 15 Gb/s with a sensitivity of -7.4 dBm (BER=10-12) while utilizing a single supply voltage of only 2.4 V. The 5-Gb/s sensitivity of similar receivers is constant up to 93 degC, and 10-Gb/s operation is demonstrated at 85 degC. Error-free (BER<10-12) operation of receivers combining a Ge-on-SOI photodiode with a single-ended high-speed receiver front end is demonstrated at 19 Gb/s, using a supply voltage of 1.8 V. In addition, receivers utilizing Ge-on-SOI photodiodes integrated with a low-power CMOS IC are shown to operate at 10 Gb/s using a single 1.1-V supply while consuming only 11 mW of power. A perspective on the future technological capabilities and applications of Ge-detector/Si-CMOS receivers is also provided  相似文献   

13.
An optical modulator driver IC and a preamplifier IC for 10 Gb/s optical communication systems are developed using AlGaAs/InGaAs/GaAs pseudomorphic two-dimensional electron gas (2DEG) FETs with a gate length of 0.35 μm. The optical modulator driver IC operates at a data rate up to 10 Gb/s with an output voltage swing of more than 4 Vp-p . The bandwidth for the amplifier IC is 13.0 GHZ with ab 47 dB-Ω transimpedance gain. In addition, optical transmission experiments with external optical modulation using these ICs have successfully been carried out at 10 Gb/s  相似文献   

14.
针对串行加解扰电路存在功耗大、数据处理速度慢、串行扰码需要较高时钟频率等问题,提出了一种基于JESD204B协议的新型并行加解扰电路,通过由矩阵推导出的算法实现32位数据并行加扰/解扰。使用Verilog HDL对电路进行RTL级设计,并通过Cadence公司的NCVerilog软件进行验证。结果表明,该电路能够正确实现加解扰功能,并且可以使用312.5 MHz的时钟处理10 Gb/s的数据。采用65 nm CMOS工艺制作样片,测试结果表明,该电路符合设计要求。该加解扰电路对于高速数据通信芯片的自主可控设计与实现具有重要的参考价值。  相似文献   

15.
A 0.2–2 Gb/s 6x OSR Receiver Using a Digitally Self-Adaptive Equalizer   总被引:1,自引:0,他引:1  
This paper presents a very robust 6x OSR receiver for 0.2-2 Gb/s binary NRZ signals, introducing an adaptive equalizer that is auto-calibrating on sample data statistics for reliable data recovery in presence of excessive intersymbol interference, noise and crosstalk. The proposed time domain analysis of the data eye obtained with the oversampling architecture is used to tune the equalizer transfer characteristic. The auto-calibration scheme is fully implemented in the digital domain, resulting in a hardware and power efficient architecture with low process-voltage-temperature (PVT) sensitivity. This robust and highly digitized receiver is demonstrated in 0.18 CMOS technology and is able to equalize variable cable losses up to 22 dB @ 1 GHz. The self-adaptive equalizer solution occupies only 0.05 and consumes 9 mW from a 1.8 V supply and can handle up to 20 m 100 Omega STP cable @ 2 Gb/s. The entire receiver consumes 110 mW operating at 2 Gb/s with bit error rates of better than < 10-12.  相似文献   

16.
According to the principle of the binary DETFF (double-edge-triggered flip-flop) based on binary clock, and the switching rule of the logic values of multivalued clock, this article proposes a general structure of AETFF (all-edges-triggered flip-flop) based on multivalued clock that makes the most of the large information-carrying capacity of multivalued signal. Binary or multivalued AETFFs based on arbitrary radices clocks can be designed by referring to the general structure, and are sensitive to every edge of multivalued clocks with a simple structure, high efficiency and low power, which can be implemented not only by CMOS technology, but also by next generation of devices with multiple states. At last, CMOS quaternary AETFF based on quaternary clock was implemented based on the general structure and the transmission function theory, and simulated in HSPICE, its ideal logic functionality being shown.  相似文献   

17.
This paper presents high-speed differential input and output (I/O) interface circuits for gigabit-per-second serial data communication. The circuits are implemented in a 3.3-V/0.35-μm CMOS process. Signal levels are compatible with industry standards for low-voltage positive emitter-coupled logic (ECL), with the possibility of ac-coupling to standard ECL systems. A differential open-drain circuit with pulsed bias and active pullups offers significantly improved speed performance for a transmitter and creates wide open eye patterns. Combining circuit techniques with the features of a submicrometer technology, the presented I/O blocks enable a full-CMOS chip to communicate with high-speed ECL-compatible systems and ease up a common I/O-related speed bottleneck. The circuits operate at 622 Mb/s (OC-12) and 1.24 Gb/s (OC-24) in a repeater and a retimer configuration. The asynchronous performance of the receiver and the transmitter was tested at rates up to 2.5 Gb/s  相似文献   

18.
A high-sensitivity capacitive-coupling receiver is presented for wireless wafer probing systems. The receiver with the optimum logic threshold (OLT) achieves the highest sensitivity of 25 mV at the data rate of 2 Gb/s in 0.18-mum CMOS. The OLT receiver increases the communication distance by more than four times while providing tolerance against distance-voltage-area variations.  相似文献   

19.
A low-power, three-lane, pseudorandom bit sequence (PRBS) generator has been fabricated in a 0.18-mum CMOS process to test a multilane multi-Gb/s transmitter that cancels far-end crosstalk. Although the proposed PRBS generator was designed to produce three uncorrelated 12-Gb/s PRBS sequences, measurement results included in this paper have been obtained at only 5 Gb/s due to test setup limitations. The prototype employs a CMOS latch optimized to operate at frequencies close to the of the process and a current-mode logic (CML) MUX with modified active inductor loads for better high-speed large-signal behavior. In order to reduce the power consumption, a quarter-clock rate linear feedback shift register (LFSR) core in a power-efficient parallel architecture has been implemented to minimize the use of power-hungry, high-speed circuitry. Further power reduction has been achieved through the clever partitioning of the system into static logic and CML. In addition, the prototype design produces three uncorrelated 12-Gb/s data streams from a single quarter-rate LFSR core, thereby amortizing the power across multiple channels which lowers the power per channel by 3 times. The total measured power consumption at 5 Gb/s is 131 mW per lane and the calculated figure of merit per lane is 0.84 pJ/bit, which is significantly better than previously published designs.  相似文献   

20.
An ultrahigh-speed 8-b multiplexer (MUX) and demultiplexer (DMUX) chip set has been developed for the synchronous optical network (SONET) next-generation optical-fiber communication systems, which will require data bit rates of about 10 Gb/s. These ICs were designed using three novel concepts: a tree-type architecture giving reliable operation, a dynamic divider with a wide operating range, and a 50-Ω on-chip transmission line with high-speed pulse propagation. They were fabricated using a 0.5-μm WNx-gate GaAs MESFET process. The DMUX and MUX operated at up to 10.4 and 11.4 GHz, respectively, both with an adequate phase margin of more than 230°  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号