首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
针对酸性水溶液中铬铁分离难题,基于Fe3+还原预处理,提出选择性磷酸沉淀铬分离铬铁的方法。研究沉淀剂Na3PO4用量、溶液初始pH值、反应温度及保温时间等对铬铁分离的影响,所得较优工艺条件为:溶液初始pH值为2.0,按PO43-/Cr3+摩尔比0.375的量加入Na3PO4,90 ℃保温60 min。在上述条件下,铬沉淀率可达98.53%,铁沉淀率仅1.42%,分离效果理想。实验还证明,该方法适用于较宽的铁浓度范围,而且Cu2+、Zn2+、Ni2+及Cl-等杂质离子对选择性沉铬无明显干扰。该方法为含铬物料的铬分离提取提供了一条新的可选途径。   相似文献   

2.
系统开展了铜锰渣的H2SO4浸出及酸浸液Na2S2O3选择性沉铜研究,通过单因素实验,分别探究了2个工艺过程的影响因素。实验结果表明:铜锰渣酸浸的较优条件为:H2SO4用量200 g/L,液固体积质量比(mL/g)7∶1,反应温度80 ℃,反应时间2 h,该条件下铜、钴、锌、锰的浸出率分别为99.81%,99.54%,99.07%,24.10%,浸出渣主要物相为MnO2。酸浸液选择性硫化沉铜的较优条件为Na2S2O3用量倍数2.0,反应时间90 min,反应温度70 ℃,该条件下铜、钴、锌、锰的沉淀率分别为99.99%,0.26%,0.34%,0.29%,沉铜渣主要物相为CuS。经过上述工艺过程,铜的回收率达到99.80%,浸出渣和沉铜渣可直接用于工业生产,沉铜后液可继续分离锌、钴等金属元素。   相似文献   

3.
氧化沉淀法从稀溶液中分离锌钴   总被引:1,自引:1,他引:0       下载免费PDF全文
以过硫酸钠为氧化剂,采用氧化沉淀法从除铁后液中分离锌钴,探讨了各因素对氧化沉淀的影响。结果表明,在过硫酸钠用量为钴理论耗量4倍、温度80℃、pH 4.85.0、氧化时间3h的最佳条件下,钴完全氧化沉淀,酸洗后渣中钴含量达15.6%,钴富集了近9倍。沉钴后液用碳酸钠中和沉淀可得到含锌51.78%的碱式碳酸锌。  相似文献   

4.
氢氧化钠沉淀分离EDTA滴定法测定锌   总被引:3,自引:0,他引:3       下载免费PDF全文
研究了以氢氧化钠沉淀分离锌和镉的条件 ,用正交设计法选择的最佳条件为 :5 0mL 2 0 0 g/LNaOH作沉淀剂 ;沉淀后 ,溶液煮沸 5min ;2 0g/LNaOH为沉淀洗涤液。分离镉后 ,用EDTA溶液滴定锌。方法准确、重复性好 ,可以代替以KI为掩蔽剂的EDTA滴定法。本法已用于置换渣中锌的测定 ,获得满意的结果。  相似文献   

5.
硫化铅精矿三氯化铁浸出新工艺研究   总被引:1,自引:0,他引:1  
研究了三氯化铁浸出硫化铅精矿,并在浸出后期沉淀银、铜、铋。通过试验,得出新工艺的最佳工艺条件为:三氯化铁质量浓度为140 g/L,氯化钠浓度为6 mol/L,浸出时间2 h,浸出温度90℃,沉淀剂用量为理论量的1.6倍,沉淀反应温度85℃,沉淀反应时间10 min。在此条件下,铅的浸出率达到98.41%,浸出渣中硫、银、铜、铋的富集率分别达90%,99%,98.5%,97%以上。  相似文献   

6.
以七水合硫酸亚铁(FeSO4·7H2O)为浸出剂,通过无酸氧压浸出工艺,实现铁酸锌(ZnFe2O4)中的锌的高效浸出和铁的同步分离。研究分析了FeSO4·7H2O与ZnFe2O4的质量比、反应温度、反应时间、氧分压对锌浸出和铁沉淀的影响。结果表明,在FeSO4·7H2O与ZnFe2O4质量比为10∶5,反应温度为180℃,氧分压为2 MPa,反应时间为3 h条件下,锌的浸出率可达87.65%,而铁以Fe2O3的形式存在浸出渣中,浸出液中铁的残留率仅为0.56%,实现了锌铁高效分离。该实验验证了FeSO4·7H2O浸出含锌粉尘中锌同步除铁的可行性,为利用FeSO4·7H2O对含锌电炉粉尘中锌的绿色提...  相似文献   

7.
氢氧化钠浸出-两步沉淀法制备铅锌精矿新工艺   总被引:3,自引:0,他引:3  
提出了贫杂氧化锌矿碱浸-沉淀法制备锌精矿和铅精矿新工艺,确定了硫化钠沉淀铅、锌的工艺参数,通过小型综合试验验证了该工艺的工业化可行性。沉淀铅的最佳参数为:硫化钠沉淀剂加入量为铅质量的1.8倍,温度70℃,反应时间30min;沉淀锌的工艺条件为:硫化钠沉淀剂加入量为需沉淀锌质量的2.4倍,温度90℃,反应时间3h。试验结果表明:铅和锌的回收率均在80%以上,得到的锌精矿中锌质量分数52%,铅精矿铅质量分数78%,均达到行业标准。  相似文献   

8.
为实现无铵富集稀土,以复合钠盐为沉淀剂,对铝盐体系离子型稀土矿浸出液中稀土进行富集。考察了pH对稀土浸出液除铝效果的影响,研究了不同沉淀剂、沉淀剂配比及用量、终点pH、反应温度、反应时间、陈化时间对稀土沉淀率的影响。结果表明,在初始稀土浓度0.014 64 mol/L、铝浓度0.54 g/L、初始pH=3.89、反应温度25 ℃、反应时间60 min的条件下,除铝终点pH=4.93时,残余铝浓度为13.02 mg/L,稀土损失为1.2%;当复合沉淀剂用量为0.7倍理论量的70%NaHCO3+30%Na2CO3、沉淀终点pH=6.72、反应时间60 min、反应温度25 ℃、陈化时间40 min时,稀土沉淀率高达99.68%,灼烧后氧化稀土总量为96.48%,铝含量为0.52%。  相似文献   

9.
废轮胎经煤油预处理后, 经热解生成炭黑, 之后煅烧生成灰渣, 针对废轮胎热解炭黑煅烧后灰渣中锌的提取进行了相关研究, 采用酸溶-分步沉淀法, 最终锌以氧化锌产品回收。分别采用4种无机酸(HCl、HNO3、H2SO4及醋酸)对灰渣进行酸溶处理, 得出盐酸对灰渣酸溶效果最佳; 在此基础上, 考察了酸浓度、液固比(酸体积/炭黑质量)、浸出时间、酸解温度等因素对锌离子浸出效果的影响, 得到锌浸出的优化工艺条件为:酸浓度2 mo1/L、温度20 ℃、浸出时间60 min和液固比6:1 (mL/g), 在此条件下浸出锌离子的浸出率约为91.4%。经分步沉淀法对滤液进行沉淀、煅烧后, 得到纯度约为98.2%氧化锌产品, 灰渣中锌提取率达到81.4%左右。   相似文献   

10.
采用低品位菱镁矿酸浸得到的硫酸镁溶液为原料,以氨水为沉淀剂制备出了纯净度高且性能优良的高纯氢氧化镁。通过改变硫酸镁浓度、反应时间和温度、氨水浓度、陈化温度和陈化时间,考察不同条件下镁的沉淀效果。确定的最佳工艺条件为:陈化温度55 ℃、陈化时间60 min、硫酸镁溶液浓度1.5 mol/L、反应时间50 min、反应温度55 ℃、氨水浓度21%,在此条件下Mg2+的沉淀率可达到90%以上。所得样品氢氧化镁晶型完整,粒径小且均匀,呈规则球状,有少量的团聚现象,平均粒径2 μm左右,纯度达到99.5%以上,高于工业用氢氧化镁一级品标准(HG/T 3607—2000)的要求。  相似文献   

11.
研究不同前驱体对氧化稀土的影响,以碳酸氢钠、碳酸氢铵、草酸为沉淀剂,氯化镧为镧源,制备了相应的前驱体,并焙烧获得了氧化镧.以TG、XRD、FT-IR、粒度分析、SEM和ICP为分析表征手段,探究前驱体对氧化镧形貌结构的影响.结果表明:前驱体焙烧时,均存在3个失重阶段,分别对应水(结晶水和吸附水)的脱离,部分CO2的脱离...  相似文献   

12.
采用FactSage热力学计算及实验室研究相结合的方法,研究了碱度(R)2.5~5.4、Al2O3(14%~30%)和MgO(3%~15%)对GCr15轴承钢CaO-Al2O3-SiO2-MgO四元精炼渣矿相析出的影响,结果表明,1 600℃时,随着碱度由2.4增加至5.4,硅酸盐类矿物的析出量由56%降低至30%,Ca3Al2O6、Ca3MgAl4O10和CaAl2O3三种矿物的总析出量从28.0%增加至58.2%;当渣中Al2O3含量由14%增加至30%时(R4.4,7%MgO),析出的金属氧化物固溶体由26%降低到3.5%,硅酸盐类矿物析出量由42%降低到33%,Ca3Al2O6、Ca3MgAl4O10和CaAl2O3三种矿物的析出量则由32.2%增大到63.2%;当渣中MgO含量由5%增加至15%时(R4.4,26%Al2O3),硅酸盐类矿物,Ca3Al2O6、Ca3MgAl4O10和CaAl2O4析出量变化并不显著。当碱度4~5,4.5%~5.5%MgO,24%~27%Al2O3时,四元渣具有适宜的黏度和熔化温度,有较好的流动性和吸附夹杂物能力。热态重熔实验确定的渣系矿相组成与热力学模拟结果一致。  相似文献   

13.
为了有效富集含磷转炉渣中磷,通过TiO2熔融改质研究了磷富集行为,对TiO2改质过程进行了热力学探讨,同时对实验炉渣进行磁选分离提取了富磷相.在1623 K条件下,随着渣中TiO2含量的增加,渣中先期析出的n2CaO·SiO2-3CaO·P2O5(以下简记nC2S-C3P)固溶体与TiO2不断反应析出CaSiTiO5、CaTiO3和高磷固溶体(n'C2S-C3P,n'2S-C3P固溶体会随着TiO2含量的增加而逐渐减少甚至消失,如渣中TiO2含量进一步增加或过量,前述反应生成的高磷固溶体(n'C2S-C3P)继续与TiO2反应,从而使富磷相中磷含量进一步提高.经350mT磁场强度下磁选后,改性后的渣中收集到的非磁性物较原渣提高了23.84%,P2O5分配比由0.96增加到2.92,分离的非磁性物占炉渣总量的65.43%,渣中74.46%的磷进入收集的非磁性物中,实现了绝大部分磷元素的回收利用.   相似文献   

14.
 基于混料试验中单纯形质心法建立了CaO-SiO2-Al2O3-MgO-2%TiO2渣黏度和熔化性能预测模型,利用预测模型、FactSage和X射线衍射(XRD)研究了不同w(Al2O3)含钛炉渣的冶金性能,并探讨了高Al2O3炉渣中w(MgO)/w(Al2O3)对黏度和熔化性能的影响。结果表明,炉渣黏度和熔化性能预测模型具有较高的精度,误差分别小于5%和2%。随着Al2O3质量分数由10%增加至18%,黏度(η)、熔化性温度(tM)和液相线温度(tL)均升高;低熔点相黄长石(Melilite)开始析出温度和析出量逐渐增大,高熔点相钙钛矿(CaTiO3)和低熔点相硅灰石(CaSiO3)开始析出温度先增大后减小,还析出了少量高熔点相尖晶石。当Al2O3质量分数小于15%、温度为1 450~1 525 ℃时,炉渣黏度均小于0.55 Pa·s,且温度为1 500 ℃时黏度为0.32~0.39 Pa·s,tMtL分别为1 370 ℃和1 330 ℃;Al2O3质量分数为15%~18%,炉渣析出的高熔点相CaTiO3和尖晶石较多,黏度对温度较为敏感,1 525 ℃时黏度为0.3 Pa·s左右,1 450 ℃时黏度增加至0.8 Pa·s。随着w(MgO)/w(Al2O3)由0.24增加至0.72,炉渣黏度降低,tMtL增大;Melilite开始析出温度约为1 425 ℃,CaTiO3开始析出温度由1 310 ℃大幅增加至1 394 ℃,CaSiO3析出量降低,尖晶石析出量明显增加。此外,不同w(Al2O3)和w(MgO)/w(Al2O3)炉渣基础相均为Melilite,其开始析出温度高于CaTiO3;w(Al2O3)对tM和Melilite开始析出温度影响显著,w(MgO)/w(Al2O3) 对tL和CaTiO3开始析出温度影响显著。当碱度为1.21时,高Al2O3炉渣适宜w(MgO)/w(Al2O3)为0.48~0.60,tMtL分别为1 400 ℃和1 340 ℃左右,炉渣流动性和稳定性较好。  相似文献   

15.
以硝酸锌为锌源,氨水、氢氧化钠、碳酸钠为沉淀剂,利用水热法制备了氧化锌。研究了不同沉淀剂得到的相应前驱体及其水热产物晶体生长规律,借助X射线衍射仪、透射电子显微镜对产物进行了表征。结果表明,以碳酸钠为沉淀剂生成的前驱体经水热得到的是碱式碳酸锌,而以氨水、氢氧化钠为沉淀剂生成的前驱体通过水热可以得到氧化锌。其晶体生长规律分别符合不同的线性关系,并具有不同的产物形貌。  相似文献   

16.
钒电解液是钒电池储能系统的关键材料,钒电解液中Mn,Cr,Ti等杂质元素含量对钒电池性能影响很大。高纯V2O5作为钒电解液的重要原料,主要从钒渣钠化焙烧-水浸或者钙化焙烧-酸浸两种工艺获得。本文选取钙化焙烧-酸浸含钒浸出液进行研究,针对其中Mn,Cr,Ti等杂质离子的除杂,形成浸出液水解沉钒—碱溶和净化—铵盐沉钒—煅烧的工艺流程,制备高纯V2O5。确定优化的钒浸出液水解沉钒制备粗V2O5条件为:反应时间为2.0 h,反应pH值为2.2,反应温度为80℃;将获得的粗V2O5进行碱溶二次净化,在优化条件为:NaOH浓度为1%,碱溶终点pH值为8.0,加入阴离子型絮凝剂,温度为60℃时,Mn,Cr,Ti等杂质均得到进一步去除;以经过二次净化后的钒浸出液为原料,在条件为反应时间为60 min,pH值为2.0,温度为90℃,加铵系数(K)为1.2时制备多钒酸铵,再得到高纯V2O5,Mn,Cr,Ti等杂质离子都得到了有效去除。  相似文献   

17.
以转炉钢渣为原料,通过高温重熔获得不同碱度渣样并开展H2O/CO2氧化试验,在获得H2/CO气体能源的同时改善渣样磁性,提升渣综合利用率。试验结果表明,随着碱度增加,析出主要物相从橄榄石到镁蔷薇辉石最终向硅酸二钙转变,与此同时,固溶在其中的RO相逐渐溶出。相同亚铁含量下,高碱度渣样能够大幅度改善氧化反应效率,碱度1.83渣样最高产气量为H2 (32.3 cm3/g)、CO (22.1 cm3/g),反应率分别达到了83.7%、57%,碱度1.13的渣样反应率分别仅为 40.5%、32%。氧化后的渣样磁选效率均有提高,碱度2.13渣样从14.85%增加到78.75%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号