首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Cellulosic absorbents for water were synthesized by photografting (λ > 300 nm) acrylic acid (AA) onto fiberous carboxymethyl cellulose (CMC, degree of substitution [DS] = 0.1–0.4) at 30°C in the presence of N,N′-methylenebisacrylamide as a crosslinker. The CMC sample was pretreated with hydrogen peroxide in the presence of sulfuric acid to prepare CMC peroxides with a peracid type as a polymeric photoinitiator. The peroxides were active for the photografting and AA could be grafted onto CMC with percent graftings higher than 150% by photoirradiation of 10 min at 30°C. The amount of water absorbed increased with increasing percent grafting of AA and DS of CMC. The amount was reduced considerably when the absorbents were prepared by the photografting of AA onto crosslinked CMC in the absence of the crosslinker. Graft copolymers which display a decreasing water absorbency as a function of temperature were prepared by two methods: In the first synthesis method, AA and N-isopropylacrylamide (NIPAAm) binary monomers were graft-copoly-merized onto CMC samples using photoinitiation. In the second method, photografting of AA was followed by a second-step photografting of NIPAAm to produce a terpolymer with two types of side chains of differing repeat unit composition on the CMC substrate. Graft copolymers formed by both methods showed decreasing water absorbency as temperature increased with losses in water absorbency of up to about 60% as the temperature was increased above 30°C. Effects of NIPAAm composition and corsslinker content in the graft copolymers on the decreasing water absorbency as a function of temperature were also examined. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
This study describes the synthesis of poly(N-isopropylacrylamide) (PNIPAM) via free radical polymerization, the preparation of physical blends containing sodium carboxymethylcellulose (CMC) and PNIPAM in aqueous solution, at total polymer concentrations of 2 and 6?g/L in different compositions, and applies rheology to investigate interactions between PNIPAM and CMC compared to pure polymers, in aqueous solution. Rheological measurements indicated thermothickening behavior for the 50?% PNIPAM–50?% CMC physical blend in aqueous solution, at 6?g/L, as viscosity rose when temperature was increased to a range of 25–40?°C. Similar thermothickening behavior was observed for the 25?% CMC–75?% PNIPAM physical blend in solution, at a total polymer concentration of 2?g/L. These results provide new information for preparing physical blends in aqueous solutions exhibiting thermothickening behavior, indicating that this behavior depends on total polymer concentration and composition of the mixture.  相似文献   

3.
Complex polymeric micelles with a PLA core and a mixed PEG/PNIPAM shell were prepared by self-assembly of two block copolymers: poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA) and poly(N-isopropylacrylamide)-b-poly(lactic acid) (PNIPAM-b-PLA). Using 1H NMR spectroscopy and dynamic light scattering, the micellization and the enzymatic degradation status were characterized. At 25 °C, the PNIPAM block is hydrophilic and the PLA core is prone to the enzymatic degradation, resulting in the disassembly of the micelles. While increasing the temperature to 45 °C, the PNIPAM collapsed onto the PLA core, protecting the PLA core from the attack by the enzyme, and the micelles exhibit a resistance to the enzymatic degradation. Furthermore, the enzymatic degradation rate of the micelles can also be tuned by changing the ratio of PEG to PNIPAM. With increasing content of PNIPAM, the conformation of the collapsed PNIPAM changes from patchy domains to a continuous and dense layer, and the enzyme accessibility to the PLA core is changed.  相似文献   

4.
Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer (Pluronic F127) was modified by introducing poly(N‐isopropylacrylamide) (PNIPAM) at both the PEO ends, and the pentablock copolymer (PNIPAM41–F127–PNIPAM41, PN41) so prepared was characterized using gel permeation chromatography and 1H NMR spectroscopy. The degree of polymerization of NIPAM blocks at the two ends was 41. The solution behaviour and microstructure of PN41 aggregates in water were examined using UV–visible spectroscopy, micro‐differential scanning calorimetry and small‐angle neutron scattering (SANS) and compared with F127. Two lower critical solution temperatures (LCSTs) were observed for the pentablock copolymer, corresponding to PPO and PNIPAM blocks, respectively. The adsorption of PN41 on thiol‐grafted hydrophobic gold surfaces at various temperatures was investigated using a quartz crystal microbalance. It was found that the adsorption behaviour and mechanism of PN41 were mainly determined by the interactions of the pentablock copolymers with different chain conformations in dilute aqueous solutions at various temperatures. SANS measurements were used to determine the temperature‐dependent structural evolution of polymer micelles in aqueous solution. A NOESY study revealed that above the LSCT of PNIPAM, the interaction of PPO and PNIPAM protons increases and the distance between PPO and PNIPAM decreases. © 2019 Society of Chemical Industry  相似文献   

5.
Amphiphilic copolymers with pendant functional groups in polyester segments are widely used in nanomedicine. These enriched functionalities are designed to form covalent conjugates with payloads or provide additional stabilization effects for encapsulated drugs. A general method is successfully developed for the efficient preparation of functional biodegradable PEG-polyester copolymers via click chemistry. Firstly, in the presence of mPEG as initiator, Sn(Oct)2-catalyzed ring-opening polymerization of the α-alkynyl functionalized lactone with D,L-lactide or ε-caprolactone afforded linear mPEG-polyesters bearing multiple pendant alkynyl groups. Kinetic studies indicated the formation of random copolymers. Through copper-catalyzed azide-alkyne cycloaddition reaction, various small azido molecules with different functionalities to polyester segments are efficiently grafted. The molecular weights, polydispersities and grafting efficiencies of azido molecules of these copolymers were investigated by NMR and GPC. Secondly, it is demonstrated that the resulting amphiphilic functional copolymers with low CMC values could self-assemble to form nanoparticles in aqueous media. In addition, the in vitro degradation study and cytotoxicity assays indicated the excellent biodegradability and low cytotoxicity of these copolymers. This work provides a general approach toward the preparation of functional PEG-polyester copolymers in a quite efficient way, which may further facilitate the application of functional PEG-polyesters as drug delivery materials.  相似文献   

6.
A new type of amphiphilic quaternary ammonium chitosan derivative, 2‐N‐carboxymethyl‐6‐O‐diethylaminoethyl chitosan (DEAE–CMC), was synthesized through a two‐step Schiff base reaction process and applied to drug delivery. In the first step, benzaldehyde was used as a protective agent for the incorporation of diethylaminoethyl groups to form the intermediate (6‐O‐diethylaminoethyl chitosan). On the other hand, NaBH4 was used as a reducing agent to reduce the Schiff base, which was generated by glyoxylic acid, for the further incorporation of carboxymethyl groups to produce DEAE–CMC. The structure, thermal properties, surface morphology, and diameter distribution of the resulting chitosan graft copolymers were characterized by Fourier transform infrared spectroscopy, 1H‐NMR, thermogravimetric analysis, differential scanning calorimetry, X‐ray powder diffraction, scanning electron microscopy, and laser particle size analysis. Benefiting from the amphiphilic structure, DEAE–CMC was able to be formed into microspheres in aqueous solution with an average diameter of 4.52 ± 1.21 μm. An in vitro evaluation of these microspheres demonstrated their efficient controlled release behavior of a drug. The accumulated release ratio of vitamin B12 loaded DEAE–CMC microspheres were up to 93%, and the duration was up to 15 h. The grafted polymers of DEAE–CMC were found to be blood‐compatible, and no cytotoxic effect was shown in human SiHa cells in an MTT [3‐(4, 5‐dimethyl‐thiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide] cytotoxicity assay. These results indicate that the DEAE–CMC microspheres could be used as safe, promising drug‐delivery systems. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39890.  相似文献   

7.
The paper discusses the enzymatic behaviour of a series of copolymers composed of alginate grafted with poly(ε‐caprolactone) (PCL) of various lengths and degrees of substitution. The study is focused on viscosity measurements and pyrene probe fluorescence with or without two enzymes: alginate lyase, which breaks the alginate backbone; and esterase, which breaks PCL pendent groups. Alginate lyase is inactive at pH = 3.8 and degrades quickly all copolymers at pH = 6.3. The degradation is not complete and is slowed down by the presence of PCL. Esterase degrades only copolymers with long pendent PCL groups. It has no effect on copolymers when PCL has a length of 530 g mol?1. These systems are good candidates for controlled release of drugs using an enzymatic method. Copyright © 2012 Society of Chemical Industry  相似文献   

8.
A series of block copolymers of acrylamide and N‐isopropylacrylamide (NIPAM) characterized by different ratios between the length of the two blocks have been prepared through atomic transfer radical polymerization in water at room temperature. The solution properties of the block copolymers were correlated to their chemical structure. The effect of the hydrophilic/hydrophobic balance on the critical micelle concentration (CMC) was investigated. The CMC increases at higher values for the solubility parameter, thus indicating a clear relationship between these two variables. In addition, the solution rheology (in water) of the block copolymers was studied to identify the effect of the chemical structure on the thermo‐responsiveness of the solutions. An increase in the length of the PNIPAM block leads to a more pronounced increase in the solution viscosity. This is discussed in the general frame of hydrophobic interactions strength. The prepared polymers are in principle suitable for applications in many fields, particularly in enhanced oil recovery. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39785.  相似文献   

9.
Stimuli‐responsive polymer materials (SRPs) have potential uses in drug delivery, tissue engineering, bioreactors, and cell‐surface adhesion control. Temperature‐responsive surfaces were fabricated by grafting poly(N‐isopropylacrylamide) (PNIPAM) onto nylon and polystyrene surfaces via a new procedure, i.e., He atmospheric plasma treatment followed by free radical graft copolymerization. The atmospheric plasma exhibits the activation capability to initiate graft copolymerization. The procedure is suitable for integration into a continuous manufacturing process. To reduce homopolymerization and enhance graft yield, Mohr's salt was added. The graft of PNIPAM was confirmed by Fourier transform infrared spectroscopy and atomic force microscopy. Dramatic water contact angle increase was found for PNIPAM‐grafted polymers at about 32°C, indicating the temperature sensitivity of the grafted surface, i.e., the change of surface from hydrophilic to hydrophobic when temperature increases above the lower critical solution temperature (LCST). The addition of Mohr's salt enhances the grafting reaction and the magnitude of temperature sensitivity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3614–3621, 2007  相似文献   

10.
Thermo‐responsive porous membranes with grafted linear and crosslinked poly(N‐isopropylacrylamide) (PNIPAM) gates are successfully prepared at temperatures above and below the lower critical solution temperature (LCST) of PNIPAM by using a plasma‐induced grafting polymerization method, and the effects of operation pressure and grafting temperature on the thermo‐responsive gating characteristics of the prepared membranes are investigated systematically. The fluxes of water through the grafted membranes increase simply with increasing the operation pressure no matter whether the environmental temperature is 40 °C or 25 °C. Under high operation pressure (e.g., higher than 0.14 MPa), the grafted linear PNIPAM gates deform to a certain extent, whereas the grafted crosslinked PNIPAM gates do not deform. For both membranes with grafted linear and crosslinked PNIPAM gates, the membranes prepared at 25 °C (below the LCST of PNIPAM) show larger thermo‐responsive gating coefficients than those prepared at 40 °C (above the LCST of PNIPAM), which results from different distributions of grafted PNIPAM gates in the membrane pores. When the PNIPAM gates are grafted at 25 °C, the grafted layer near the membrane surface is much thicker than that inside the membrane pores; on the other hand, when the PNIPAM gates are grafted at 40 °C, the grafted layer is homogeneously formed throughout the whole pore length. Both linear and crosslinked grafted PNIPAM gates in the membrane pores exhibit stable and repeatable thermo‐responsive “open‐close” switch performances under the operation pressure of 0.26 MPa. The results in this study provide valuable guidance for designing, fabricating, and operating thermo‐responsive gating membranes with desirable performances.  相似文献   

11.
Microparticles formed by poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) diblock copolymers containing fluorescein grafted to the polymer chain were synthesized by a Ugi four‐component condensation (UFCC) reaction. To synthesize these copolymers, lactide was first polymerized by a ring‐opening polymerization with alcohol initiators containing functional groups to give carboxyl‐ and aldehyde‐end‐functionalized PLA. Two different fluorescent block copolymers (FCPs) of PEG–PLA conjugated to fluorescein (FCP 1 and FCP 2) were then synthesized by UFCC; they gave yields in the range 65–75%. These copolymers were characterized well according their chemical structures and thermal properties, and we prepared fluorescent microspheres (FMSs) from them with the single emulsion–solvent evaporation method (FMS 1 and FMS 2). A new application of UFCC in the preparation of biomasked drug‐delivery systems is proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42994.  相似文献   

12.
The biodegradation of starch and grafted starch by Aspergillus niger was examined. The grafted polymers were poly(methyl methacrylate) (PMMA) and poly(butyl acrylate) (PBA). Thermogravimetric analysis, Fourier transform infrared, and scanning electron microscopy were used to determine the morphology and degradation degree of each material. The temperature of maximum decomposition for starch decreased as enzymatic degradation proceeded, and it was completed on the 8th day of culturing in a liquid medium. Grafted samples with PMMA and PBA achieved degradation of their starch moiety. PBA in starch‐g‐PBA samples hindered the accessibility of the enzymes to the degradable material, and this resulted in a longer degradation time. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2764–2770, 2003  相似文献   

13.
In this article, a series of poly(N‐isopropylacrylamide) (PNIPAM)‐based hydrogels were prepared under microwave irradiation using poly(ethylene oxide)‐600 (PEO‐600) as reaction medium and microwave‐absorbing agent as well as pore‐forming agent. All of the temperature measurements, gel fractions, and FTIR analyses proved that the PNIPAM hydrogels were successfully synthesized. Within 1 min, the PNIPAM hydrogel with a 98% yield was obtained under microwave irradiation. The PNIPAM hydrogels thus prepared exhibited controllable properties such as pore size, equilibrium swelling ratios, and swelling/deswelling rates when changing the feed weight ratios of monomer (N‐isopropylacrylamide, NIPAM) to PEO‐600. These properties are well adapted to the different requirements for their potential application in many fields such as biomedicine. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:4177–4184, 2006  相似文献   

14.
Biodegradable polymer blends prepared by blending poly(3‐hydroxybutyrate) (PHB) and corn starch do not form intact films due to their incompatibility and brittle behavior. For improving their compatibility and flexibility, poly(vinyl acetate) (PVAc) was grafted from the corn starch to prepare the PVAc‐modified corn starch (CSV). The resulting CSV consisted of 47.2 wt% starch‐g‐PVAc copolymer and 52.8 wt% PVAc homopolymer and its structure was verified by FT‐IR analysis. In comparison with 35°C of the neat PVAc, the glass transition temperature (Tg) of the grafted PVAc chains on starch‐g‐PVAc was higher at 44°C because of the hindered molecular mobility imposed from starch on the grafted PVAc. After blending PHB with the CSV, structure and thermal properties of the blends were investigated. Only a single Tg was found for all the PHB/CSV blends and increased with increasing the CSV content. The Tg‐composition dependence of the PHB/CSV blends was well‐fitted with the Gordon‐Taylor equation, indicating that the CSV was compatible with the PHB. In addition, the presence of the CSV could raise the thermal stability of the PHB component. It was also found that the presence of the PHB and PVAc components would not hinder the enzymatic degradation of the corn starch by α‐amylase. POLYM. ENG. SCI., 55:1321–1329, 2015. © 2015 Society of Plastics Engineers  相似文献   

15.
Radiation‐induced graft polymerization of acrylic acid (AAc) on poly(3‐hydroxybutyric acid) (PHB) film was carried out and the resulting film was thermally‐remolded. The PHB films grafted with AAc (PHB‐g‐AAc) having a degree of grafting higher than 5% completely lost the enzymatic degradability. The enzymatic degradability of the grafted film was recovered by thermal remolding. The highest enzymatic degradation rate was observed at degree of grafting of 10% after thermal remolding. The PHB‐g‐AAc films and thermally‐remolded PHB‐g‐AAc films were characterized by contact angle and differential scanning calorimetry. The enzymatic degradability of PHB‐g‐AAc films was lost by the grafted AAc, which covered the surface of PHB film. The acceleration of enzymatic degradation in the remolded PHB‐g‐AAc films was mainly caused by decrease of crystallinity of PHB by dispread of grafted AAc during thermal remolding. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3856–3861, 2006  相似文献   

16.
Carboxymethylcellulose (CMC) is a cellulose derivative obtained by the carboxymethylation of some hydroxyl groups in the cellulose macromolecules. In this article, we use CMC as a model compound of cellulose fibers to study polyamineamide epichlorohydrin (PAE)–fibers interactions during the preparation of PAE‐based wet strength papers. The main advantages of the use of CMC to replace cellulose fibers are its water‐soluble character and the homogeneous reaction medium during mixing with PAE resin. Based on 13C cross‐polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) and Fourier transformed infra‐red (FTIR) spectroscopy, we prove the formation of ester bonds in PAE–CMC films boosted by a thermal posttreatment at 105°C for 24 h. These ester bonds are derived from a thermally induced reaction between carboxyl groups in the CMC structure and azetidinium ions (AZR) in the PAE resin. PAE‐based handsheets were prepared from 100% Eucalyptus fibers. After preparation, some samples were thermally posttreated (TP) at 130°C for 10 min and stored under controlled conditions (25°C and 50% relative humidity or RH). For lowest PAE dosage, storage of the not thermally posttreated (NTP) PAE‐based handsheets does not allow them to reach the tensile strength values of TP PAE‐based handsheets (at 130°C for 10 min), but the difference in terms of breaking length remains low. For the highest PAE addition level, NTP and TP PAE‐based handsheets exhibit close values of the breaking length from 30 days of storage under controlled conditions (25°C and 50% RH). When a thermal posttreatment is applied, the wet strength development of PAE‐based papers is a combined effect of homo‐ and co‐cross‐linking mechanisms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42144.  相似文献   

17.
The effect of the hydrotropic agent, sodium p-toluenesulfonate (NaPTS), was evaluated on the micelle formation process and on phase behavior of aqueous solutions containing poly(ethylene oxide-b-propylene oxide) (PEO–PPO) copolymers. We have studied monofunctional diblock copolymers coupled with hydrocarbons groups (R—PEO—PPO—OH and R—PPO—PEO—OH, where R length is linear C4 and C12–14). The critical micelle concentration (CMC) and critical micelle temperature (CMT) values of the aqueous copolymers solutions were obtained from both surface tension versus concentration plots and the dye solubilization method. The influence of the hydrocarbons groups length and PPO segment position in the structure of the copolymers were also analyzed. The same measures were obtained for the aqueous solutions of hydrotropic agent which, in turn, also presented molecular aggregation. The presence of the hydrotropic agent in the aqueous copolymers solutions altered the surface tension of these solutions and the occupied molecular area per copolymer molecule at air–water interface and CMC and CMT values of the copolymers. On the other hand, the aggregation points and the surface tension of the NaPTS solutions were dependent on the copolymer structure and composition. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2459–2468, 1998  相似文献   

18.
Thermoresponsive poly(N‐isopropyl acrylamide) (PNIPAM)‐block‐hydroxy‐terminated polybutadine‐block‐PNIPAM triblock copolymers were synthesized by atom transfer radical polymerization; this was followed by the in situ epoxidation reaction of peracetic acid. The copolymers were characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and size exclusion chromatography measurements, and their physicochemical properties in aqueous solution were investigated by surface tension measurement, fluorescent spectrometry, ultraviolet–visible transmittance, transmission electron microscopy observations, dynamic light scattering, and so on. The experimental results indicate that the epoxidized copolymer micelle aggregates retained a spherical core–shell micelle structure similar to the control sample. However, they possessed a decreased critical aggregate concentration (CAC), increased hydrodynamic diameters, and a high aggregation number and cloud point because of the incorporation of epoxy groups and so on. In particular, the epoxidized copolymer micelles assumed an improved loading capacity and entrapment efficiency of the drug, a preferable drug‐release profiles without an initial burst release, and a low cytotoxicity. Therefore, they were more suitable for the loading and delivery of the hydrophobic drug as a controlled release drug carrier. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41877.  相似文献   

19.
Thermal degradation of unmercerized and mercerized cotton cellulose with different % NaOH solutions and grafted vinylic copolymers with different mixtures of vinyl acetate‐methylacrylate1 have been studied by thermogravimetric analysis (TGA) in nitrogen between 25 and 600°C at different heating rates. The differences between unmercerized and mercerized samples are related to structural differences between cellulose‐I (native) and cellulose‐II. The grafted cellulosic vinylic copolymers have shown that their thermal stability depends upon the cellulosic substrate and the grafting percentage. From our results, it can be deduced that it is possible to prepare the cellulosic materials with good thermal stability, short degradation temperature interval, and various residues at the end of degradation. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 201–209, 1999  相似文献   

20.
The random copolymers of ε-caprolactone (CL) and 2,2-ethylenedioxy propane-1,3-diol carbonate (EOPDC) were synthesized in bulk at 120 °C using Sn(Oct)2 as a catalyst. The poly(EOPDC-co–CL)s obtained were characterized by FT IR, 1H NMR, 13C NMR, GPC and DSC. The copolymers were obtained with yield of 84.2–97.8 %. The number-average molecular weight of the copolymer is 2.75–7.76 × 104 with a polydispersity of 1.52–1.68. The properties of the copolymer including the enzymatic degradation by Pseudomonas Cepacia lipase and drug-controlled release property were also investigated. The results showed that the copolymers are degradable at physiological conditions, and their degradation rate and release of Tegafur in the copolymers increase with increasing CL content in the copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号