首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
溴冷机吸收器型式研究进展   总被引:1,自引:0,他引:1  
综述了国内外溴化锂吸收式制冷机中吸收器的发展历史及研究现状;介绍了降膜式吸收器并分析了近些年发展起来的喷雾式吸收器的情况和各自的特点,分析得出:传热传质分离的预冷却吸收器可以对传热和传质过程分别进行强化,大大提高吸收器的工作效率,能在很大意义上节约设备耗材、节省投资,具有很高的学术和经济效益。  相似文献   

2.
吸收压力对LiBr斜板绝热吸收器的影响   总被引:1,自引:0,他引:1  
吸收器作为溴化锂吸收式制冷机中重要的组成部分,其中进行的传热传质过程对机组的吸收效果和传热性能有着重要的影响.本文对蒸汽——溴化锂水溶液在传热传质分离的绝热吸收器中的吸收情况进行了实验研究,对进出口温差、浓度差、吸收率随吸收压力的变化关系进行了分析,并和数值结进行了对比。实验结果表明,在实验的条件范围内,斜板绝热吸收的传质系数比水平管降膜吸收的传质系数有很大的提高,传质得到了强化。  相似文献   

3.
建立垂直管吸收器管内泡式吸收过程中传热传质的数学物理模型,对其泡式吸收过程进行数值研究,获得泡式吸收方式的一些传热传质特性,为吸收器的优化设计提供一定理论指导。  相似文献   

4.
针对传热、传质分离的填料吸收器,设计、加工了一个溴化锂绝热降膜吸收的循环实验装置;实验研究了溴化锂水溶液在填料层上的绝热吸收特性;分析了溶液温度、浓度、降膜雷诺数对吸收效率和传质系数的影响。  相似文献   

5.
本文的目的是针对降膜和泡式两种吸收模式,分析氨水吸收过程的复合传热传质,并企图对传热传质面积等重要参数对吸收量的影响进行参数分析。用在冷却剂侧有偏置肋片(OSF)的板式热交换器来设计降膜和泡式吸收器。已经发现,泡式吸收器的局部吸收量总是大于降膜式,使此种吸收器的尺寸比降膜式约小48.7%。对降膜式吸收器、液体侧的传质阻力是决定性的,而气体侧的热热和传质阻力的也很大。对泡式吸收器,液体侧传质阻力是决定性的,而比泡式吸收器大,而对泡式吸收器,传质系数的影响比降膜式更大。  相似文献   

6.
本文从定义吸收器的传热系数和传质系数出发,分析传热和传质的相互作用,得到了实用的、易于计算的操作线方程。引用斯蒂芬流的概念建立了一种更合理的吸收扩散模型。对描述过程的基本方程组进行简化和求解,得到了吸收器的传热量和传质量计算式,并计算了吸收器的传热系数和传质系数。对盘管吸收器的试验结果表明,所作的理论分析是正确的。其结果可供研究和设计吸收器参考。  相似文献   

7.
溴化锂降膜式吸收器能在较小液流量和较小温差下获得较高的热流密度和传热传质系数,尤其是当液膜沿着水平管外作降膜流动时,传热传质效果更佳。为此建立溴化锂降膜吸收器溶液吸收过程流动的物理模型,通过对模型假设简化,对其进行数值求解,从而进行流动分析。与实验结果分析相结合,使得对吸收式制冷系统的分析更加全面。  相似文献   

8.
吸收式制冷机是热交换器的集合体,其中采用大量的传热管件。吸收器又是吸收式制冷机中最关键的部位,因此强化其传热和传质,是提高机器性能的重要手段。溴化锂溶液对管材又有一定的腐蚀性,解决其防腐问题,也为人们所关心。本文介绍几种强化的传热管的性能及其制造技术,一种风冷用降膜吸收管,并提供较好地解决防腐问题的特种钢管材。1 同时顾及传热和传质的强化管 为了提高吸收器的性能和减小其尺寸,必须使传热管高性能化。此时可从吸收管的传热和传质两方面进行改进。通常的传热管在增强传热的同时,其传质却受到干扰,例如在改善传…  相似文献   

9.
热管式溶液吸收器传热传质过程的数值模拟   总被引:4,自引:1,他引:3  
本文首次利用水重力热管,以溴经锂水溶液为工质,对在这外壁面上溶液降膜吸收水蒸气并移出吸收热的传热传质过程进行了数值模拟。结果表明,在一定条件下,所需热管加热段长度随膜雷诺数的增加而增加,随输出热温度的提高而减小,并且降膜平均传热和传质系数随膜雷诺数的增加而降低;利用热管作为吸收器的传热传质元件,其传热温差很小,但大较大浓差和较大雷诺数下,所需热管加热段长度太长。  相似文献   

10.
吸收式制冷技术具有环保、节电和利用余热等不可替代的优点,在我国应用广范。溴化锂机组的吸收器是系统中换热面积最大、成本最高的换热部件,采用添加剂强化吸收器传热传质是一种不可缺少的手段。但是添加剂的强化机理却一直没有研究清楚,各国对添加剂的强化机理的研究很重视,已经有了不少研究成果,本文对国外添加剂对溴化锂制冷机吸收器的强化机理的研究进行简要介绍和分析。  相似文献   

11.
吸收式热泵技术由于能有效利用低势热能而节约高品位的电能,已经成为一项重要的节能技术。吸收器是吸收式热泵的最重要的部件,其性能主要取决于换热管的传热与传质系数,而传热管表面液体降膜状态对传热和传质系数将产生直接影响。布液器是实现液体降膜的关键部件,而目前国内外鲜有相关研究。针对这种现状,共试制了四种规格的布液器样品,针对Φ19和Φ25的紫铜光管与强化换热管进行了管外垂直降膜布液实验,得到了各种布液器布液流量与静液柱高度关系的实验数据,并且拟合了布液器的流量系数与雷诺数的函数关系。根据实验结果提出了优化布液的方法,并用于指导热泵机组的设计。优化后的布液器已经被成功应用于国内首台供热量为1.3MW垂直降膜式吸收式热泵机组样机。  相似文献   

12.
板式膜反转降膜吸收器设计与性能研究   总被引:3,自引:0,他引:3  
板式膜反转降膜吸收器是一种将板式降膜吸收和膜反转技术相结合而开发的新型吸收器,合理设计与掌握其吸收性能对今后这种吸收器的工程应用十分重要.为此,通过建立、求解板式膜反转降膜吸收过程的数学模型,确立了设计条件下最佳吸收器结构;对于所设计的板式膜反转吸收器进行了不同吸收压力、溶液流量、进口浓度、进口温度及冷却条件下传热传质性能的计算,并与竖板降膜吸收器进行了比较.  相似文献   

13.
Falling-film heat and mass transfer in an absorber can be influenced by the motion of the surrounding refrigerant vapor. In this study, the effect of the vapor flow direction on the absorption heat and mass transfer has been investigated for a falling-film helical coil absorber which is frequently used in the ammonia/water absorption refrigerators. The heat and mass transfer performance was measured for both parallel and countercurrent flow. The experiments were carried out for three different solution concentrations (3, 14, and 30%). The vapor in equilibrium with the solution is supplied to the test section. It is found that the falling-film heat and mass transfer is deteriorated in the countercurrent flow if the specific volume of the vapor solution is large. For the countercurrent flow, the high velocity of the vapor due to large specific volume seems to cause the unfavorable distribution of falling-film and reduce the heat and mass transfer performance of the ammonia absorber. The effect of vapor flow direction decreased with increasing concentration of ammonia solution since the specific volume of the ammonia vapor which is in equilibrium with the solution becomes smaller and the vapor velocity becomes lower.  相似文献   

14.
An absorber is a major component in the absorption refrigeration systems, and its performance greatly affects the overall system performance. In this study, both the numerical and experimental analyses in the absorption process of a bubble mode absorber were performed. Gas was injected into the bottom of the absorber at a constant solution flow rate. The region of gas absorption was estimated by both numerical and experimental analyses. A higher gas flow rate increases the region of gas absorption. As the temperature and concentration of the input solution decrease, the region of gas absorption decreases. In addition, the absorption performance of the countercurrent flow was superior to that of cocurrent. Mathematical modeling equations were derived from the material balance for the gas and liquid phases based on neglecting the heat and mass transfer of water from liquid to gas phase. A comparison of the model simulation and experimental results shows similar values. This means that this numerical model can be applied for design of a bubble mode absorber.  相似文献   

15.
The objectives of this paper are to analyze the combined heat and mass transfer characteristics for the ammonia bubble absorption process and to study the effects of binary nanofluids and surfactants on the absorber size. The ammonia bubble absorbers applying binary nanofluids and surfactants are designed and parametric analyses are performed. In order to express the effects of binary nanofluids and/or surfactants on the absorption performance, the effective absorption ratios for each case are applied in the numerical model. The values of the effective absorption ratio are decided from the previous experimental correlations. The kinds and the concentrations of nano-particles and surfactants are considered as the key parameters. The considered surfactants are 2-ethyl-1-hexanol (2E1H), n-octanol, and 2-octanol and nano-particles are copper (Cu), copper oxide (CuO), and alumina (Al2O3). The results show that the application of binary nanofluids and surfactants can reduce the size of absorber significantly. In order to reach 16.5% ammonia solution under the considered conditions, for example, the addition of surfactants (2E1H, 700 ppm) can reduce the size of absorber up to 63.0%, while the application of binary nanofluids (Cu, 1000 ppm) can reduce it up to 54.4%. In addition, it is found that the effect of mass transfer resistance is more dominant than that of heat transfer resistance. That is, the enhancement of mass transfer performance is more effective than that of heat transfer performance.  相似文献   

16.
A model is developed for calculation of simultaneous heat and mass transfer processes in vertical bubble absorbers as used for ammonia-water absorption refrigeration systems. Some preliminary experiments have been performed in an absorber without heat removal. The results from these experiments are compared with the literature and give a first indication about the methods for prediction of the absorption process. Experiments have also been performed with simultaneous heat removal. The internal diameters of the absorbers tested were 10.0, 15.3, and 20.5 mm. The mass transfer coefficients resulting from these experiments are correlated by a modified Sherwood relation. An interative procedure is presented which allows design of vertical tubular bubble absorbers for ammonia-water absorption refrigeration systems.  相似文献   

17.
An innovative hybrid hollow fiber membrane absorber and heat exchanger (HFMAE) made of both porous and nonporous fibers is proposed and studied via mathematical simulation. The porous fibers allow both heat and mass transfers between absorption solution phase and vapor phase, while the nonporous fibers allow heat transfer between absorption solution phase and cooling fluid phase only. The application of HFMAE on an ammonia–water absorption heat pump system as a solution-cooled absorber is analyzed and compared to a plate heat exchanger falling film type absorber (PHEFFA). The substantially higher amount of absorption obtained by the HFMAE is made possible by the vast mass transfer interfacial area per unit device volume provided. The most dominant factor affecting the absorption performance of the HFMAE is the absorption solution phase mass transfer coefficient. The application of HFMAE as the solution-cooled absorber and the water-cooled absorber in a typical ammonia–water absorption chiller allows the increase of COP by 14.8% and the reduction of the overall system exergy loss by 26.7%.  相似文献   

18.
The objectives of this paper are to investigate the effect of heat transfer additive and surface roughness of micro-scale hatched tubes on the absorption performance and to provide a guideline for the absorber design. Two different micro-scale hatched tubes and a bare tube are tested to quantify the effect of the surface roughness on the absorption performance. The roughness of the micro-scale hatched tubes ranges 0.39–6.97 μm. The working fluid is H2O/LiBr solution with inlet concentration of 55, 58 and 61 wt.% of LiBr. Normal Octanol is used as the heat transfer additive with the concentration of 400 ppm. The absorber heat exchanger consists of 24 horizontal tubes in a column, liquid distributor at the liquid inlet and the liquid reservoir at the bottom of the absorber. The effect of heat transfer additive on the heat transfer rate is found to be more significant in the bare tube than that in the micro-scale hatched tubes. It is found that the absorption performance for the micro-hatched tube with heat transfer additive becomes up to 4.5 times higher than that for the bare tube without heat transfer additive. It is concluded that the heat transfer enhancement by the heat transfer additive is more significant than that by the micro-scale surface treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号