首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
为研究铝合金三角形波纹夹芯板受到平头弹冲击后的损伤形式与抗冲击性能,利用一级气炮对铝合金三角形波纹夹芯板的两种冲击位置进行冲击试验。根据试验数据,对比分析三角形波纹夹芯板及等面密度单层板的弹道极限速度与耗能,并结合有限元仿真分析夹芯板的动态损伤过程、动态载荷响应及损伤机理。研究结果表明,三角形波纹夹芯板损伤形式为剪切破坏、撕裂破坏与弯曲变形。波纹板的抗冲击性能低于等面密度的单层板,并且波纹板节点位置的抗冲击性能高于基座位置。当弹体冲击速度较低时,波纹板的耗能低于单层板,随着冲击速度增加,波纹板节点位置的耗能高于单层板,基座位置的耗能与单层板相近。此外,波纹板的动态载荷响应与失效机理均受到冲击位置与弹体冲击速度的影响。  相似文献   

2.
轴向冲击作用下泡沫铝填充圆管吸能特性研究   总被引:1,自引:0,他引:1  
基于金属圆管移动塑性铰理论,建立一种考虑偏心率效应和相互作用效应的泡沫铝填充圆管轴向冲击移动塑性铰分析模型,利用LS-DYNA软件对填充结构进行冲击仿真试验.结果表明,移动塑性铰模型和静态塑性铰模型相比,移动塑性铰模型计算的理论结果与仿真结果具有更好的一致性.泡沫铝填充圆管的平均压溃载荷与偏心率m有关,m存在最优值,冲击速度越大,m的最优值也越大.受轴向冲击载荷压溃时,泡沫铝与圆管之间存在明显的相互作用效应,在分析吸能特性时应加以考虑.  相似文献   

3.
采用热压一次成型的工艺制备了曲面碳纤维增强树脂复合材料点阵夹芯结构,进行了三点弯试验探究了结构的弯曲破坏载荷与破坏模式。结果显示:结构的载荷位移曲线分为4个阶段,分别为线性阶段、损伤起始阶段、损伤演化阶段和失效阶段;破坏模式主要为面板压溃与节点失效。通过ABAQUS显示求解器建立了有效的弯曲和模态振动模型,得到弯曲破坏过程的失效模式、载荷位移曲线及结构振动模态与固有频率。讨论了不同参数(几何参数和材料性能)对弯曲和振动性能的影响,比较了不同边界条件对固有频率的影响。结果显示:相对密度(面板厚度、芯子直径)的增加会使结构的弯曲破坏载荷和固有频率增大,而芯子倾角ω的增大会使弯曲破坏载荷与固有频率的减小;材料的比刚度越大,固有频率越高。  相似文献   

4.
将泡沫填充圆管的平均压溃载荷视为圆管、泡沫及圆管与泡沫相互作用三部分之和, 基于作者提出的直链塑性铰改进模型, 研究了两种泡沫变形模式对泡沫填充圆管准静态压溃行为的影响, 得到了新的最优屈曲半波长和平均压溃载荷的理论计算公式, 并研究了两种泡沫变形模式下, 偏心率和塑性角参数对最优屈曲半波长和平均压溃载荷的影响。结果表明, 泡沫变形模式 Ⅰ 下的平均压溃载荷略高于泡沫变形模式 Ⅱ 下的相应值, 泡沫变形模式对最优屈曲半波长影响较大; 与文献[14]相比, 所得平均压溃载荷理论预测值与试验结果吻合得更好。   相似文献   

5.
针对传统复合材料格栅夹芯结构极限承载能力较低、单胞封闭易造成水汽凝结的问题,在分析管胞微观结构和功能性的基础上,提出一种新型十字嵌锁型格栅夹芯结构。首先选取最小体积(最小质量)和最小变形(最大刚度)为优化目标,利用第二代非支配遗传算法(NSGA-Ⅱ)完成多目标优化,采用三维Hashin失效准则和改进的刚度退化方法建立格栅夹芯板的冲击渐进损伤有限元分析模型,研究多种低速冲击载荷对不同相对密度夹芯结构的不同位置的破坏机制及力学响应。结果表明:新型格栅夹芯结构表现出良好的低速冲击阻抗,其随芯子的空间分布存在差异,格栅间隙处的抗冲击性能较弱,芯子密度的提高不能有效增强该位置处的冲击强度,夹芯结构所受到的破坏远远大于冲击器撞击格栅交点处的情况;受不同冲击位置和冲击速度的影响,载荷-时间和位移-时间曲线呈现出不同的典型模式,芯子出现屈曲、分层、粘接剥离、折弯变形等失效形式,复合材料上面板发生混合损伤,随着冲击速度的增加,芯子和面板的损伤程度也愈严重。  相似文献   

6.
Kagome点阵夹芯板的抗冲击性能研究   总被引:3,自引:1,他引:3  
Kagome点阵夹芯结构是近年来提出的一种力学性能十分优异的新型点阵夹芯结构。建立了3D-Kagome点阵夹芯板在理想冲击载荷作用下的分析模型,将含有大量周期性单胞的芯子等效为实体板,得到了Kagome芯子的等效本构关系,给出了芯子的等效强度和刚度。采用有限元方法模拟3D-Kagome夹芯板在理想冲击载荷作用下的响应,研究了板的最大挠度随芯子相对密度、芯子的厚度参数和冲击载荷大小的变化规律,得出了该结构抗冲击的最优化设计方案。与相同重量的实体板比较发现,3D-Kagome点阵夹芯板在抵抗冲击、能量吸收和耗散等方面具有很大的优势。  相似文献   

7.
目的 为避免或减小高g值冲击对弹内轻质元器件的破坏,应加强对轻质元器件缓冲防护结构的研究。方法 基于新型复合泡沫和通孔泡沫铝的2种泡沫填充管,通过万能试验机和落锤冲击系统研究了2种泡沫填充管的静动态力学特性,并运用数值模拟方法研究高g值冲击下等质量的泡沫填充管与夹芯管的加速度缓冲效果和吸能机制。结果 数值模拟所得结构变形和落锤加速度与实验结果较为一致,验证了数值模拟方法的可靠性。复合泡沫平台应力具有显著的应变率效应,其填充管压溃载荷平稳且高于泡沫铝填充管,比泡沫铝填充管体现出更优异的高过载防护性能。等质量的泡沫夹芯管的抗冲击性能优于填充管,2种泡沫填充而成的夹芯管具有相似的高过载防护性能,泡沫材料压缩行为对夹芯管压溃载荷特征的影响低于填充管。结论 所得结果对轻质元器件的高g值缓冲防护有较强的指导意义。  相似文献   

8.
以改进V-型褶皱夹芯结构为研究对象,采用模压成型法制备出改进的V-型复合材料褶皱芯子,结合二次粘接工艺将复合材料层合板与褶皱芯子进行复合得到一种新型复合材料褶皱夹芯结构。利用数值模拟与试验相结合的方法,重点考察了该结构在平压载荷作用下的力学响应及其破坏机制。通过引进纤维压溃模型,对该结构的损伤演化过程进行了描述,数值模拟与试验获得的压缩应力-应变曲线吻合较好。实验研究发现,相对密度的变化不仅对该结构的力学性能产生影响,而且将直接导致该结构的破坏模式发生转变。  相似文献   

9.
有效的触发机制能诱导并改善复合材料吸能结构的轴向渐进压溃行为,但仍无法解决汽车吸能结构在斜向冲击载荷下的失稳问题。为了提出新的设计来改善失稳行为,对复合材料吸能圆管在半圆凹槽触发机制下的斜向压溃行为和失效机制进行研究。建立引入半圆凹槽触发机制的圆管有限元模型,采用界面和层内非线性损伤演化模型来模拟其真实的压溃失效模式。通过对比模拟和实验对应的轴向压溃载荷、吸能和失效模式来验证圆管的准静态压溃模型。进而,预测斜向压溃角度(10°~50°)对圆管在半圆凹槽触发机制下压溃行为的影响,并详细揭示其轴向和斜向压溃失效机制及其区别。结果表明,压溃载荷、吸能及失效面积随角度增大而明显减小,不稳定的压溃过程使材料失效耗能不充分。圆管在轴向压溃下表现为渐进破坏,而在斜向压溃下以“渐进破坏”向“失稳破坏”过渡为特征,导致斜向压溃载荷与吸能曲线均存在一个过渡。本研究加深了对圆管在外部触发机制下斜向压溃失效机制的理解,为改善斜向压溃失稳行为提供了一定的设计依据。  相似文献   

10.
研究了碳纤维增强高韧环氧树脂5288复合材料薄壁圆管件的轴向压溃行为和引发角尺寸之间的关系.对15°,45°,60°引发角的相同尺寸试件分别进行轴向压溃试验,记录了试验过程中的结构载荷力-位移曲线,对照各组不同引发角的管形件轴向压溃过程的峰值压溃载荷、最小压溃载荷后发现,当引发角为60°时,结构的峰值压溃载荷最高,最小压溃载荷最低.对试验件失效后组织进行微观分析后发现,对应于不同引发角,由于接触状态不同,圆管件发生了不同方式的压溃失效,导致了结构吸能力-位移曲线的变化.  相似文献   

11.
试验设计了3块钢板夹泡沫铝夹芯板,厚度分别为50 mm、70 mm和100 mm。对每种厚度夹芯板进行七组不同落锤高度的冲击试验,测得了上、下面板变形值,记录了夹芯板的破坏情况。应用数值模拟软件ANSYS/LS-DYNA进一步还原夹芯板冲击过程,导出了面板与芯材的吸能占比。基于假设的夹芯板理论模型,给出了平均冲击荷载、局部变形和整体变形最大值的估算公式。结果表明:当夹芯板尺寸和材料强度一定时,局部变形值与落锤高度的平方根成正比,整体变形最大值、平均冲击力均与落锤高度的平方根成线性关系。夹芯板的抗冲击性能主要依靠增大泡沫铝芯层的变形进行耗能,芯层越厚,泡沫铝吸能占比越大,局部变形越小,夹芯板受到的冲击力越大。  相似文献   

12.
为改进传统单向波纹夹层结构横向力学性能较差的缺点,设计了一种新型复合材料双向波纹夹层结构。考虑复合材料双向夹层结构制备困难,研究了整套真空辅助成型工艺(VARI)工艺制备方案,实现双向波纹夹层结构的高效制备,以满足工程应用的需要。对制备出的复合材料双向波纹夹层结构与单向波纹夹层结构分别进行面外压缩、弯曲和剪切实验,分析了双向波纹夹层结构在不同载荷下的破坏模式及其失效机制,计算了该结构在不同荷载条件下的强度和模量,并将其与单向波纹夹层结构进行对比分析。结果表明,在压缩荷载作用下,玻璃纤维/环氧树脂芯子为主要承载部分,结构的失效主要体现在芯子的屈曲、断裂和分层;在弯曲荷载的作用下,由于纤维的抗压强度远小于抗拉强度,所以压头下方的上面板最先达到破坏荷载,结构的弯曲失效形式主要为上面板的断裂和脱粘;结构的剪切失效主要以泡沫与面板的脱粘和压溃为主,芯子和面板未见明显的破坏现象;与单向波纹夹层结构相比,双向波纹夹层结构力学性能显著提升。   相似文献   

13.
对复合材料泡沫夹芯板局部连接拉脱破坏进行了试验研究,分析了接头的破坏模式、失效载荷和面板对接头的影响。采用ABAQUS有限元软件进行了数值分析,通过与实验结果对比验证其模型的可靠性,预测分析内部的破坏模式以及结构参数对接头破坏的影响,研究了泡沫芯体内部的渐进破坏以及面板和泡沫芯体之间的胶层脱粘破坏。结果表明:泡沫夹芯板预埋螺栓连接结构灌封胶边缘的泡沫先产生裂纹后向中间扩展,中间区域全部开裂时两端裂纹沿着45°方向向上扩展。胶层开裂的区域呈弧形条状,分布在螺栓紧固件的两侧,在面板宽度方向,开裂的区域贯穿两侧。随着预埋件深度的增加最大破坏载荷也在增加,随着预埋件直径的增加亚临界破坏载荷和最大破坏载荷没有比较明显的变化,但最大破坏位移在减小。   相似文献   

14.
以泡沫铝为夹芯材料,玄武岩纤维(BF)和超高分子量聚乙烯纤维(UHMWPE)复合材料为面板,制备夹层结构复合材料。研究纤维类型、铺层结构和芯材厚度对泡沫铝夹层结构复合材料冲击性能和损伤模式的影响规律,并与铝蜂窝夹层结构复合材料性能进行对比分析。结果表明:BF/泡沫铝夹层结构比UHMWPE/泡沫铝夹层结构具有更大的冲击破坏载荷,但冲击位移和吸收能量较小。BF和UHMWPE两种纤维的分层混杂设计比叠加混杂具有更高的冲击破坏载荷和吸收能量。随着泡沫铝厚度的增加,夹层结构复合材料的冲击破坏载荷降低,破坏吸收能量增大。泡沫铝夹层结构比铝蜂窝夹层结构具有更高的冲击破坏载荷,但冲击破坏吸收能量较小;泡沫铝芯材以冲击部位的碎裂为主要失效形式,铝蜂窝芯材整体压缩破坏明显。  相似文献   

15.
Sandwich composites are finding increasing applications in aerospace, marine and commercial structures because they offer high bending stiffness and lightweight advantages. Currently, foam and honeycomb core sandwich composites are widely used in structural applications. However, affordability continues to be the driver to develop sandwich constructions that can be processed at lower costs and containing integrated design features. This paper considers sandwich constructions with reinforced cores by way of three-dimensional Z-pins embedded into foam, honeycomb cells filled with foam, and hollow/space accessible Z-pins acting as core reinforcement. These designs offer added advantages over conventional constructions load bearing by enabling functions such as ability to route wires, mount electronic components, increase transverse stiffness, tailor vibration damping, etc. With the assumption that these sandwich constructions would be part of a larger structure, impact damage is often of concern. This paper deals with: (a) processing of sandwich composites using out-of-autoclave cost-effective liquid molding approach, and (b) investigation of the high strain rate impact (164–326/s) response of the sandwich composite structures. Wherever applicable, comparisons are made to traditional foam core and honeycomb core sandwich constructions.  相似文献   

16.
亓昌  杨丽君  杨姝 《振动与冲击》2013,32(13):70-75
采用动力显式有限元方法,以面比吸能和背板最大变形量为评价指标,研究了铝合金面板—梯度铝泡沫芯体—装甲钢背板夹层结构的抗爆性能。分析了芯体密度梯度排布对结构抗爆性能的影响,并与均匀密度铝泡沫夹层板进行了对比。同时,基于径向基函数建立了夹层结构抗爆性能预测响应面模型,在此基础上对夹层结构进行了多目标优化设计。结果表明,铝泡沫芯体相对密度排布顺序对夹层结构抗爆性影响明显;具有最佳芯体密度梯度排布的铝泡沫夹层结构的抗爆性能明显优于等质量的均匀密度铝泡沫夹层结构;多目标优化可进一步提高梯度铝泡沫夹层结构的综合抗爆性能。  相似文献   

17.
Aluminium foam core sandwich panels are good energy absorbers for impact protection applications, such as light-weight structural panels, packing materials and energy absorbing devices. In this study, the high-velocity impact perforation of aluminium foam core sandwich structures was analysed. Sandwich panels with 1100 aluminium face-sheets and closed-cell A356 aluminium alloy foam core were modelled by three-dimensional finite element models. The models were validated with experimental tests by comparing numerical and experimental damage modes, output velocity, ballistic limit and absorbed energy. By this model the influence of foam core and face-sheet thicknesses on the behaviour of the sandwich panel under impact perforation was evaluated.  相似文献   

18.
杨阳  王新筑  蹇开林 《包装工程》2022,43(23):144-151
目的 探究复合材料褶皱芯子的一次性成型工艺,并研究浸胶量对褶皱夹芯结构压缩性能的影响。方法 以V型褶皱夹芯结构为研究对象,首先采用真空吸附成型工艺制备V型复合材料褶皱芯子,然后通过黏接工艺将碳纤维复合材料层合板与褶皱芯子进行复合,得到复合材料褶皱夹芯结构,最后通过实验测试,研究该结构在压缩载荷作用下的力学性能和失效模式,以及不同浸胶量对其压缩性能的影响。结果 采用真空吸附成型工艺能够一次性制备出褶皱芯子,其成型精度有待提高;由压缩实验可知,褶皱夹芯结构先从壁面开始失效,后逐步扩散至棱线处,最终导致芯子的整体失效;由压缩实验测试结果可知,浸胶量(质量分数)为11%、17%、22%的褶皱夹芯结构的破坏载荷分别为362.853、420.521、471.389 N。结论 采用真空吸附成型工艺可一次性成型出褶皱芯子,其制备效率较高,但存在成型尺寸精度不高问题,后续需要进一步改进;在一定范围内,复合材料褶皱夹芯结构的压缩破坏载荷与芯子的浸胶量近似成正比例线性关系。  相似文献   

19.
陈峰  袁一彬  刘洋  孙学超 《包装工程》2024,45(9):250-260
目的 以钎焊高温合金蜂窝夹层板为研究对象,分析其在弹丸高速冲击作用下的力学性能。方法 采用轻气炮冲击加载试验结合有限元模拟,对蜂窝夹层板开展不同冲击强度下的动态响应和失效研究。开展含高速冲击损伤的蜂窝夹层板侧压试验,研究损伤模式对剩余强度的影响。结果 冲击强度对夹层板的失效过程和失效模式有着明显的影响,当冲击条件不足以使得迎弹面发生侵彻时,夹层板失效为表面压痕损伤;随着冲击强度的提高,出现不同程度的局部芯层压缩;当冲击强度大于临界值时,迎/背弹面陆续被侵彻,夹层板出现侵入损伤及贯穿损伤。结论 高速冲击损伤使得蜂窝夹层板的侧压失效模式,由理想塑性屈曲转变为局部失稳,侧压极限载荷大幅降低。  相似文献   

20.
鉴于泡沫铝材料优异的吸能特性和夹层结构在强度、刚度上的优势,提出了分层结构为钢板-泡沫铝芯层-钢板的抗爆组合板。对厚度为10 cm、7 cm和5 cm的组合板进行了5组不同装药量的爆炸试验,考察了各板在不同装药量爆炸条件下的变形及破坏情况,并对变形破坏过程进行了理论分析。研究表明:组合板承受爆炸冲击荷载时,通过局部压缩变形和整体弯曲变形吸收能量。钢板相同时,适当增大泡沫铝芯层厚度,增强面板与芯层间连接,可提高该组合板的抗爆性能,防止组合板发生剥离,减小其承受爆炸冲击荷载时产生的变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号