首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
气体膜分离技术及应用   总被引:1,自引:0,他引:1  
曹明 《广州化工》2011,39(17):30-31,82
简要介绍了有关气体膜分离的基本原理、材料及其在氢气分离回收、空气分离和酸性气处理中的应用,并对气体膜分离的发展前景提出了自己的见解。  相似文献   

2.
气体膜分离技术的进展及其应用   总被引:5,自引:0,他引:5  
介绍了气体分离膜材料的种类;叙述了介绍了气体膜分离技术在分离空气制备富氧、富氮,水蒸气、有机蒸汽的分离和氢气回收等工业领域的应用.介绍了气体膜分离技术的研究进展,并提出了我国气体膜分离技术发展方向.  相似文献   

3.
简要介绍了气体分离膜的分离机理、膜材料的种类,概述了气体膜分离技术在氢气回收、有机蒸气净化和回收、空气分离等工业领域的应用。  相似文献   

4.
介绍了工业上应用的变压吸附分离、膜分离和深冷分离三种氢气提浓技术的基本原理,重点阐述了各分离技术的工艺技术特点及其进展,比较分析了各工艺技术的适用性,对炼厂低浓度氢气回收利用的技术路线选择进行探讨,为炼厂氢气资源的优化利用提供技术依据。  相似文献   

5.
气体膜分离技术在合成氨联醇工艺中的应用   总被引:2,自引:0,他引:2  
董子丰  赵勇 《化肥工业》1995,22(6):17-20
介绍了气体膜分离技术在合成氨串联联醇工艺中的应用,即从合成弛放气中回收氢气来增产氨或甲醇。简介在新的并联醇工艺中,采用气体分离技术的特点及气体膜分离技术在合成气调比中的应用。  相似文献   

6.
气体膜分离技术的应用及发展前景   总被引:10,自引:1,他引:9  
介绍了适用于气体分离的各种材料,并着重介绍气体膜分离技术在各领域的应用实例,如天然气中H2S的脱除及油田CO2回收利用,医用氧,空气和水蒸气的分离,从炼厂气中回收氢气等等,最后预测分析了我国气体膜分离技术的发展方向。  相似文献   

7.
阐述了膜分离技术在化学工业过程中的部分应用,如用于合成氨中的氢气回收、有机蒸汽的分离回收、催化裂化中的富氧再生、海水淡化、卤水提炼及工业废水处理等工艺过程中,并对膜分离技术的强化和未来进行了展望。  相似文献   

8.
氢气在钯膜中的传递服从"溶解-扩散"机理。钯膜可以单独组成膜分离器,用于生产高纯度的氢气,也可以与氢气的生产过程相耦合,形成钯膜反应器,用于通过再线的氢气分离打破制氢过程的化学反应平衡,一步法生产高纯氢气。主要介绍了当前膜分离器和反应器的研发进展,介绍了几种膜分离器及反应器的概念设计,并指出了钯膜技术的发展方向。  相似文献   

9.
《合成纤维工业》2016,(4):65-68
介绍了精对苯二甲酸(PTA)生产过程中氢气的使用和排放现状,指出了PTA装置氢气回收的必要性。分析了目前工业中应用较为广泛的氢气回收方法,包括深冷分离法、变压吸附法和膜分离法,对比了3种方法的优缺点。初步设计了PTA装置氢气回收工艺流程,预估了PTA装置氢气回收的经济性。膜分离法具有回收氢气浓度高、投资少等优点,用于PTA装置氢气回收较为适合;膜分离法用于PTA装置氢气回收后,可大幅降低装置的氢气、氮气和蒸汽的使用量,节能效果显著,具有良好的应用前景。  相似文献   

10.
介绍了变压吸附、膜分离、变温吸附三种氢气提纯分离技术,分析了克拉玛依石化公司现有氢源现状,结合克拉玛依石化公司各类氢源性质,提出科学利用不同气源提纯氢气的方法,目的是节约氢气制造成本、缓解供需氢气矛盾。  相似文献   

11.
Hybrid Techniques for Off‐Gas Cleaning Membrane techniques have achieved an acknowledged technological level for different gas separation applications. These include the air separation for inert gas production or oxygen enrichment, the separation of water vapor from pressurized air, and the separation hydrogen/carbon monoxide and hydrogen/nitrogen during the synthesis of ammonia. Other examples are for instance the carbon dioxide/methane separation during ternary oil extraction and the separation of organic vapors from vent or process gases in the chemical industry and during the handling of gasoline. It is thus obvious that membrane techniques have a great potential for off‐gas cleaning. By combining membrane separation with adsorption very low emissions can be achieved economically and safely.  相似文献   

12.
The separation characteristics of hydrogen from a gas mixture were investigated by using a single and two-stage inorganic membrane. Three palladium impregnated membranes were prepared by using the sol-gel, hydrolysis, and soaking-and-vapor deposition (SVD) techniques. A two-stage gas separation system without a recycling stream was constructed to see how much the hydrogen separation factor would be increased. Numerical simulation for the separation system was conducted to predict the separation behavior for the multi-stage separation system and to determine the optimal operating conditions at which the highest separation factor is obtained. Gas separation through each prepared membrane was achieved mainly by Knudsen diffusion. The real separation factor for the H2/ N2 mixture was increased with the pressure difference and temperature for a single stage, respectively. For the twostage separation system, there was a maximum point at which the highest separation factor was obtained and the real hydrogen separation factor for H2/N2 mixture was increased about 40 % compared with a single stage separation. The numerical simulation for the single and two-stage separation system was in a good agreement with the experimental results. By numerical simulation for the three-stage separation system, which has a recycle stream and three membranes that have the same permeability and hydrogen selectivity near to the Knudsen value, it is clear that the hydrogen separation factors for H2/N2 mixture are increased from 1.8 to 3.65 and hydrogen can be concentrated up to about 80 %. The separation factors increased with increasing recycle ratio. Optimal operating conditions exist at which the maximum real separation factor for the gas mixture can be obtained for three-stage gas separation and they can be predicted successfully by numerical simulation.  相似文献   

13.
高逸飞  易群  齐凯  高丽丽  李雪莲 《化工进展》2022,41(12):6395-6407
氢气的生产、分离和储存已经成为世界绿色能源经济的重要组成部分。通过膜分离法从工业副产物中提纯氢气,不但操作简便,且显著降低了分离的能耗,是一种有前景的分离技术。金属有机框架(metal-organic frameworks,MOFs)因具有晶态、有序、明确的多孔结构和较大的比表面积,被认为是理想的气体分离膜材料。本文以MOFs基分离膜为研究对象,对比综述了MOFs膜的常规制备技术,总结了水热/溶剂热法、界面合成法、二次生长法和浇铸法的合成机理及应用。简述了在H2/CH4分离方面MOFs膜的设计原理及应用。针对MOFs膜当前存在的柔性、孔径、晶界结构、稳定性等问题,重点介绍了对制备方法与改良和对薄膜的后修饰策略,以期实现对MOFs膜性能的调控。最后,指出了目前该技术存在的难以大规模生产、分离性能不足的缺点,开发低成本的大规模生产方法同时提高薄膜的分离性能将会是未来MOFs膜实现工业应用的关键。  相似文献   

14.
The separation of hydrogen from carbon monoxide (syngas ratio adjustment) with polymeric membranes was investigated in this work. A polyimide hollow fiber membrane module was used for hydrogen separation. This polymer has shown large permeability and selectivity for hydrogen separation (selectivity of ca. 30). Permeation tests were carried out at different feed conditions. Feed flow rates were varied between 150–300 mL/min, temperature was varied in the range of 20–80 °C and feed pressure was varied between 5–9 bar. Mixtures containing 0–50 % carbon monoxide were used when carrying out experiments. Measured membrane permeances for hydrogen and carbon monoxide were about 70–100 GPU (gas permeation units) and 3–5.5 GPU, respectively. In addition, a mathematical model for simulation of gas separation in hollow fiber membrane modules with all flow patterns (crossflow, countercurrent and cocurrent) was presented. This model can be used for calculation of membrane performance or its required surface area for a specific separation. Experimental results have shown good correlation with simulation results. Plasticization, competitive sorption and concentration polarization effect of carbon monoxide on membrane performance is shown with experimental results. This effect reduced hydrogen permeances in mixed gas experiments.  相似文献   

15.
综述了过氧化氢中无机杂质的来源和高纯过氧化氢生产中无机杂质的净化技术研究进展,这些技术包括:精馏法、离子交换树脂法、吸附法、结晶法、絮凝法、膜分离技术,以及这些技术的组合净化技术等.精馏净化产品纯度不高,但技术成熟,可工业放大;膜分离净化技术较安全,但膜的寿命短;离子交换树脂工艺简单,净化效率高,但树脂易被氧化.指出以精馏为前净化技术,再与膜分离、树脂法相结合是无机杂质去除技术的发展趋势.  相似文献   

16.
Catalytic membrane reactors based on oxygen-permeable membranes are recently studied for hydrogen separation because their hydrogen separation rates and separation factors are comparable to those of Pd-based membranes. New membrane materials with high performance and good tolerance to CO2 and H2S impurities are highly desired. In this work, a new membrane material Ce0.85Sm0.15O1.925–Sr2Fe1.5Mo0.5O6-δ (SDC–SFM) was prepared for hydrogen separation. It exhibits high conductivities at low oxygen partial pressures, which is benefit to electron transfer and ion diffusion. A high hydrogen separation rate of 6.6 mL cm−2 min−1 was obtained on a 0.5-mm-thick membrane coated with Ni/SDC catalyst at 900°C. The membrane reactor was operated steadily for 532 h under atmospheres containing CO2 and H2S impurities. Various characterizations reveal that SDC–SFM has good stability in the membrane reactor for hydrogen separation. All facts confirm that SDC–SFM is promising for hydrogen separation in practical applications. © 2018 American Institute of Chemical Engineers AIChE J, 65: 1088–1096, 2019  相似文献   

17.
高纯过氧化氢生产中有机物杂质的净化技术进展   总被引:3,自引:0,他引:3  
介绍了工业级过氧化氢中有机物杂质的来源,综述了高纯过氧化氢生产中有机物杂质的净化技术研究进展,包括精馏、吸附、离子交换树脂、溶剂萃取、结晶、膜分离技术以及这些技术的组合净化技术。精馏净化产品纯度不高,但技术成熟,可工业放大;膜分离净化技术较安全,但膜的寿命短;吸附树脂工艺简单、净化效率高,但树脂易被氧化。指出以精馏为前净化技术,再与膜分离、树脂吸附相结合是有机碳杂质去除技术的发展趋势。  相似文献   

18.
The global energy market is in a transition towards low carbon fuel systems to ensure the sustainable development of our society and economy. This can be achieved by converting the surplus renewable energy into hydrogen gas. The injection of hydrogen (≤10% v/v) in the existing natural gas pipelines is demonstrated to have negligible effects on the pipelines and is a promising solution for hydrogen transportation and storage if the end-user purification technologies for hydrogen recovery from hydrogen enriched natural gas (HENG) are in place. In this review, promising membrane technologies for hydrogen separation is revisited and presented. Dense metallic membranes are highlighted with the ability of producing 99.9999999% (v/v) purity hydrogen product. However, high operating temperature (≥300 °C) incurs high energy penalty, thus, limits its application to hydrogen purification in the power to hydrogen roadmap. Polymeric membranes are a promising candidate for hydrogen separation with its commercial readiness. However, further investigation in the enhancement of H2/CH4 selectivity is crucial to improve the separation performance. The potential impacts of impurities in HENG on membrane performance are also discussed. The research and development outlook are presented, highlighting the essence of upscaling the membrane separation processes and the integration of membrane technology with pressure swing adsorption technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号