首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
This work presents a new MILP mathematical formulation for the resource-constrained short-term scheduling of flowshop batch facilities with a known topology and limited supplies of discrete resources. The processing structure is composed of multiple stages arranged in series and several units working in parallel at each one. All production orders consist of a single batch and follow the same processing sequence throughout the plant. The proposed MILP approach is based on a continuous time domain representation that relies on the notion of order predecessor and accounts for sequence-dependent setup times. Assignment and sequencing decisions are independently handled through separate sets of binary variables. A proper formulation of the sequencing constraints provides a substantial saving in sequencing variables and constraints. By postulating a pair of conditions for the simultaneous execution of processing tasks, rather simple resource constraints requiring a few extra binary variables are derived. The proposed MILP scheduling approach shows a remarkable computational efficiency when applied to real-world problems.  相似文献   

2.
This paper presents a heuristic approach based on genetic algorithm (GA) for solving large-size multi-stage multi-product scheduling problem (MMSP) in batch plant. The proposed approach is suitable for different scheduling objectives, such as total process time, total flow time, etc. In the algorithm, solutions to the problem are represented by chromosomes that will be evolved by GA. A chromosome consists of order sequences corresponding to the processing stages. These order sequences are then assigned to processing units according to assignment strategies such as forward or backward assignment, active scheduling technique or similar technique, and some heuristic rules. All these measures greatly reduce unnecessary search space and increase the search speed. In addition, a penalty method for handling the constraints in the problem, e.g., the forbidden changeovers, is adopted, which avoids the infeasibility during the GA search and further greatly increases the search speed.  相似文献   

3.
We propose a novel method for integrating planning and scheduling problems under production uncertainties. The integrated problem is formulated into a bi-level program. The planning problem is solved in the upper level, while the scheduling problems in the planning periods are solved under uncertainties in the lower level. The planning and scheduling problems are linked via service level constraints. To solve the integrated problem, a hybrid method is developed, which iterates between a mixed-integer linear programming solver for the planning problem and an agent-based reactive scheduling method. If the service level constraints are not met, a cutting plane constraint is generated by the agent-based scheduling method and appended to the planning problem which is solved to determine new production quantities. The hybrid method returns an optimality gap for validating the solution quality. The proposed method is demonstrated by two complicated problems which are solved efficiently with small gaps less than 1%.  相似文献   

4.
This contribution introduces an efficient constraint programming (CP) model that copes with large-scale scheduling problems in multiproduct multistage batch plants. It addresses several features found in industrial environments, such as topology constraints, forbidden product-equipment assignments, sequence-dependent changeover tasks, dissimilar parallel units at each stage, limiting renewable resources and multiple-batch orders, among other relevant plant characteristics. Moreover, the contribution deals with various inter-stage storage and operational policies. In addition, multiple-batch orders can be handled by defining a campaign operating mode, and lower and upper bounds on the number of batches per campaign can be fixed. The proposed model has been extensively tested by means of several case studies having various problem sizes and characteristics. The results have shown that the model can efficiently solve medium and large-scale problems with multiple constraining features. The approach has also rendered good quality solutions for problems that consider multiple-batch orders under a campaign-based operational policy.  相似文献   

5.
Constrained optimization problems are very important as they are encountered in many engineering applications. Equality constraints in them are challenging to handle due to tiny feasible region. Additionally, global optimization is required for finding global optimum when the objective function and constraints are nonlinear. Stochastic global optimization methods can handle non-differentiable and multi-modal objective functions. In this paper, a new constraint handling method for use with such methods is proposed for solving equality and/or inequality constrained problems. It incorporates adaptive relaxation of constraints and the feasibility approach for selection. The recent integrated differential evolution (IDE) with the proposed constraint handling technique is tested for solving benchmark problems with constraints, and then applied to many chemical engineering application problems with equality and inequality constraints. The results show that the proposed constraint handling method with IDE (C-IDE) is reliable and efficient for solving constrained optimization problems, even with equality constraints.  相似文献   

6.
In the pursuit of integrated scheduling and control frameworks for chemical processes, it is important to develop accurate integrated models and computational strategies such that optimal decisions can be made in a dynamic environment. In this study, a recently developed switched system formulation that integrates scheduling and control decisions is extended to closed-loop operation embedded with nonlinear model predictive control (NMPC). The resulting framework is a nested online scheduling and control loop that allows to obtain fast and accurate solutions as no model reduction is needed and no integer variables are involved in the formulations. In the outer loop, the integrated model is solved to calculate an optimal product switching sequence such that the process economics is optimized, whereas in the inner loop, an NMPC implements the scheduling decisions. The proposed scheme was tested on two multi-product continuous systems. Unexpected large disturbances and rush orders were handled effectively.  相似文献   

7.
In the refinery scheduling, operational transitions in mode switching are of great significance to formulate dynamic nature of production and obtain efficient schedules. The discrete-time formulation meets two main challenges in modeling:discrete approximation of time and large size of mixed-integer linear problem (MILP). In this article, a continuous-time refinery scheduling model, which involves transitions of mode switching, is presented due to these challenges. To reduce the difficulty in solving large scale MILPs resulting from the sequencing constraints, the global event-based formulation is chosen. Both transition constraints and production transitions are introduced and the numbers of key variables and constraints in both of the discrete-time and continuous-time formulations are analyzed and compared. Three cases with different lengths of time horizons and different numbers of orders are studied to show the efficiency of the proposed model.  相似文献   

8.
A novel rule-based model for multi-stage multi-product scheduling problem (MMSP) in batch plants with parallel units is proposed. The scheduling problem is decomposed into two sub-problems of order assignment and order sequencing. Firstly, hierarchical scheduling strategy is presented for solving the former sub-problem, where the multi-stage multi-product batch process is divided into multiple sequentially connected single process stages, and then the production of orders are arranged in each single stage by using forward order assignment strategy and backward order assignment strategy respectively according to the feature of scheduling objective. Line-up competition algorithm (LCA) is presented to find out optimal order sequence and order assignment rule, which can minimize total flow time or maximize total weighted process time. Computational results show that the proposed approach can obtain better solutions than those of the literature for all scheduling problems with more than 10 orders. Moreover, with the problem size increasing, the solutions obtained by the proposed approach are improved remarkably. The proposed approach has the potential to solve large size MMSP.  相似文献   

9.
This paper presents a novel genetic algorithm (GA) for the scheduling of a typical multi-purpose batch plant with a network structure. Multi-purpose process scheduling is more difficult to deal with compared to single-stage or multi-stage process scheduling. A large amount of literature on this problem has been published and nearly all of the authors used mathematical programming (MP) methods for solution. In the MP methods, a huge number of binary variables, as well as numerous constraints to consider mass balance and sequencing of batches in space/time dimensions, are needed for the large-size problem, which leads to very long computational time. In the proposed GA, only a small part of the binary variables are selected to code into binary chromosomes, which is realized through the identification of crucial products/tasks/units. Due to the logical heuristics utilized to decode a chromosome into a schedule, only the feasible solution space is searched. Our genetic algorithm has first been devised with particular crossover for makespan minimization and then adjusted for production maximization.  相似文献   

10.
The scheduling of multi-product, multi-stage batch processes is industrially important because it allows us to utilize resources that are shared among competing products in an optimal manner. Previously proposed methods consider problems where the number and size of batches is known a priori. In many instances, however, the selection and sizing (batching) of batches is or should be an optimization decision. To address this class of problems we develop a novel mixed-integer linear programming (MILP) formulation that involves three levels of discrete decisions: selection of batches, assignment of batches to units and sequencing of batches in each unit. Continuous decision variables include sizing and timing of batches. We consider various objective functions: minimization of makespan, earliness, lateness and production cost, as well as maximization of profit, an objective not addressed by previous multi-stage scheduling methods. To enhance the solution of the proposed MILP model we propose symmetry breaking constraints, develop a preprocessing algorithm for the generation of constraints that reduce the number of feasible solutions, and fix sequencing variables based upon time window information. The model enables the optimization of batch selection, assignment and sequencing decisions simultaneously and is shown to yield solutions that are better than those obtained by existing sequential optimization methods.  相似文献   

11.
The aim of this research is to optimize the geometry of the overlap in mixed adhesive single- and double-lap joints using a modified version of Bees and Genetic Algorithms (BA and GA). Accounting for adherends Poisson's ratio in the deduced equilibrium equations, the proposed shear lag model gives a more accurate approximation of joint failure load in comparison with Volkersen's solution. The objective functions used in this work are used separately to maximize the load bearing capacity f and the specific strength (f/w) of the joint. This procedure is applied to optimize aeronautical adhesively bonded assemblies, while taking manufacturing constraints into account. The employed constraints are the application of yield criterion on adherends as well as geometrical constraint on the overlap length. The proposed straightforward procedure provides 18 optimal configurations amid a wide range of changes for optimization variables, among which the designer can take a choice, depending on his/her goal. The efficiency of the two employed algorithms, BA and GA, in searching for the optimum geometrical design of the mixed adhesive joints have also been investigated. The results show the more robust and efficient performance of the modified version of BA over GA in such kinds of engineering problems.  相似文献   

12.
This paper presents a new MILP mathematical formulation for the scheduling of resource-constrained multiproduct plants involving continuous processes. In such facilities, a sequence of continuous processing steps is usually carried out to produce a significant number of final products and required intermediates. In order to reduce equipment idle time due to unbalanced stage capacities, storage tanks are available for temporary inventory of intermediates. The problem goal is to maximize the plant economic output while satisfying specified minimum product requirements. The proposed approach relies on a continuous time domain representation that accounts for sequence-dependent changeover times and storage limitations without considering additional tasks. The MILP formulation was applied to a real-world manufacturing facility producing seven intermediates and fifteen final products. Compared with previous scheduling methodologies, the proposed approach yields a much simpler problem representation with a significant saving in 0–1 variables and sequencing constraints. Moreover, it provides a more realistic and profitable production schedule at lower computational cost.  相似文献   

13.
This paper presents a heuristic rule-based genetic algorithm (GA) for large-size single-stage multi-product scheduling problems (SMSP) in batch plants with parallel units. SMSP have been widely studied by the researchers. Most of them used mixed-integer linear programming (MILP) formulation to solve the problems. With the problem size increasing, the computational effort of MILP increases greatly. Therefore, it is very difficult for MILP to obtain acceptable solutions to large-size problems within reasonable time. To solve large-size problems, the preferred method in industry is the use of scheduling rules. However, due to the constraints in SMSP, the simple rule-based method may not guarantee the feasibility and quality of the solution. In this study, a random search based on heuristic rules was proposed first. Through exploring a set of random solutions, better feasible solutions can be achieved. To improve the quality of the random solutions, a genetic algorithm-based on heuristic rules has been proposed. The heuristic rules play a very important role in cutting down the solution space and reducing the search time. Through comparative study, the proposed method demonstrates promising performance in solving large-size SMSP.  相似文献   

14.
New approaches for facility distribution in chemical plants are proposed including an improved non-overlapping constraint based on projection relationships of facilities and a novel toxic gas dispersion constraint. In consideration of the large number of variables in the plant layout model, our new method can significantly reduce the number of variables with their own projection relationships. Also, as toxic gas dispersion is a usual incident in a chemical plant, a simple approach to describe the gas leakage is proposed, which can clearly represent the constraints of potential emission source and sitting facilities. For solving the plant layout model, an improved genetic algorithm (GA) based on infeasible solution fix technique is proposed, which improves the globe search ability of GA. The case study and experiment show that a better layout plan can be obtained with our method, and the safety factors such as gas dispersion and minimum distances can be well handled in the solution.  相似文献   

15.
We present an effective scheduling heuristic for realistic production planning in a petrochemical blending plant. The considered model takes into account orders spanning a multi-product portfolio with multiple bills of materials per product, that need to be scheduled on shared production facilities including a complex pipeline network. Capacity constraints, intermediate storage restrictions, due dates, and the dedication of resources to specific product families have to be respected. The primary objective of the heuristic is to minimize the total order tardiness. Secondary objectives include the minimization of pipeline cleaning operations, the minimization of lead times, and the balanced utilization of filling units.The developed algorithm is based on a dynamic prioritization-based greedy search that schedules the orders sequentially. The proposed method can schedule short to mid-term operations and evaluate different plant configurations or production policies on a tactical level. We demonstrate its performance on various real-world inspired scenarios for different scheduling strategies.Our heuristic was used during the construction phase of a new blending plant and was instrumental in the optimal design of the plant.  相似文献   

16.
This paper addresses the problem of developing an optimisation structure to aid the operational decision-making of scheduling activities in a real-world pipeline scenario. The pipeline connects an inland refinery to a harbour, conveying different types of oil derivatives. The optimisation structure is developed based on mixed integer linear programming (MILP) with uniform time discretisation, but the MILP well-known computational burden is avoided by the proposed decomposition strategy, which relies on an auxiliary routine to determine temporal constraints, two MILP models, and a database. The scheduling of operational activities takes into account product availability, tankage constraints, pumping sequencing, flow rate determination, and a variety of operational requirements. The optimisation structure main task is to predict the pipeline operation during a limited scheduling horizon, providing low cost operational procedures. Illustrative instances demonstrate that the optimisation structure is able to define new operational points to the pipeline system, providing significant cost saving.  相似文献   

17.
We propose a series of preprocessing algorithms for the generation of strong valid inequalities for time-indexed, discrete and continuous, mixed-integer programming scheduling models for problems in network production environments. Specifically, starting from time- and inventory-related instance data, the proposed algorithms use constraint propagation techniques to calculate parameters that are used to bound the number of times subsets of tasks can be executed in a feasible solution. We also extend some of the propagation ideas to generate three classes of new tightening constraints. The proposed methods result in tightening constraints expressed in terms of assignment binary variables (Xijt = 1 if task i is assigned to start on unit j at time point t) which are present in all time-indexed MIP models, therefore they are applicable to all time-indexed models accounting for a wide range of processing features. Finally, the methods are shown to lead to up to two orders of magnitude reduction in computational time when optimal solutions are found and significantly improve optimality gap when a time limit is enforced.  相似文献   

18.
Cross-docking is a logistic strategy for moving goods from suppliers to customers via a cross-dock terminal with no permanent storage. The operational planning of a cross-dock facility involves different issues such as vehicle routing, dock door assignment and truck scheduling. The vehicle routing problem seeks the optimal routes for a homogeneous fleet of vehicles that sequentially collects goods at pickup points and delivers them to their destinations. The truck scheduling problem deals with the timing of unloading and reloading operations at the cross-dock. This work introduces a mixed-integer linear programming formulation for the scheduling of single cross-dock systems that, in addition to selecting the pickup/delivery routes, simultaneously decides on the dock door assignment and the truck scheduling at the cross-dock. The proposed monolithic formulation is able to provide near-optimal solutions to medium-size problems involving up to 70 transportation orders, 16 vehicles and 7 strip/stack dock doors at acceptable CPU times.  相似文献   

19.
基于约束规划的无等待混合流水车间调度问题研究   总被引:1,自引:0,他引:1  
针对k-阶段等速机无等待混合流水车间最小化最大完工期的调度问题,提出基于约束规划的模型和求解策略.模型利用约束规划自然地表达问题的优化目标和约束条件.求解策略包括采用有限深度偏离搜索例程、采用限定失败次数策略、综合运用离散资源、一元资源和替代资源约束表达工件在各阶段对设备要求等.通过数值实验验证了约束规划方法的有效性.整个方法能够很好地满足实际应用中对计算效率和效果的要求.  相似文献   

20.
The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of opera...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号