首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 143 毫秒
1.
Poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) can be crosslinked by interfacial polymerization to develop a positively charged dense network structure. According to this mechanism, a positively charged hollow‐fiber composite nanofiltration (NF) membrane was prepared by quaternization to achieve a crosslinked PDMAEMA gel layer on the outer surface of polysulfone hollow‐fiber ultrafiltration (UF) membranes with a PDMAEMA aqueous solution as a coating solution and p‐xylylene dichloride as an agent. The preparation conditions, including the PDMAEMA concentration, content of additive in the coating solution, catalyzer, alkali, crosslinking temperature, and hollow‐fiber substrate membrane, were studied. Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the structure of the membranes. This membrane had a rejection to inorganic salts in aqueous solution. The rejection of MgSO4 (2 g/L aqueous solution at 0.7 MPa and 25°C) was above 98%, and the flux was about 19.5 L m?2 h?1. Moreover, the composite NF membranes showed good stability in the water‐phase filtration process. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Crosslinked polythiosemicarbazide (PTSC) membranes with a positively charged surface are fabricated via a reaction with (3‐glycidyloxypropyl)trimethoxysilane. The integrally asymmetric ultrafiltration membranes discussed here can be easily prepared by water‐induced phase separation using a PTSC solution in dimethylsulfoxide (DMSO). The crosslinked PTSC membranes are stable in DMSO, N,N‐dimethylformamide, and tetrahydrofuran and they reject molecules of molecular weights (MW) above 1300 g mol?1. The influence of the crosslinking agent on the surface charge, membrane solvent resistance, and membrane performance is discussed. The crosslinked asymmetric PTSC membranes totally reject Direct Red dye (MW 1373 g mol?1), while the pristine PTSC membrane does not show any rejection for this dye. This finding suggests that an inorganic‐type‐network is formed during the crosslinking reaction, which tunes the pore size of the prepared membranes.  相似文献   

3.
The goal of this study was to prepare positively charged nanofiltration (NF) membranes to remove cations from aqueous solutions. A composite NF membrane was fabricated by the modification of a polysulfone ultrafiltration support. The active top layer was formed by the interfacial crosslinking polymerization of poly(ethylene imine) (PEI) with p‐xylene dichloride (XDC). Then, it was quaternized by methyl iodide (MI) to form a perpetually positively charged layer. The chemical and morphological changes of the membrane surfaces were studied by Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy. To optimize the membrane operation, the PEI solution concentration, PEI coating time, XDC concentration, crosslinking time, and MI concentration were optimized. Consequently, high water flux (5.4 L m?2 h?1 bar?1) and CaCl2 rejection (94%) values were obtained for the composite membranes at 4 bars and 30°C. The rejections of the NF membrane for different salt solutions, obtained from pH testing, followed the order Na2SO4 < MgSO4 < NaCl < CaCl2. The molecular weight cutoff was calculated by the retention of poly(ethylene glycol) solutions with different molecular weights, and finally, the stoke radius was calculated as 1.47 nm. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41988.  相似文献   

4.
A novel, positively charged membrane was prepared through a blending, crosslinking, and coagulation procedure in which poly(N,N‐dimethylaminoethyl methacrylate) (PDM) and polyacrylonitrile (PAN) were used as the functional and substrate component, respectively. Because 1,4‐dibromobutane (DBT) was used as the crosslinker and quaternizing agent, PDM was crosslinked and quaternized simultaneously. The effects of PDM content, polymer concentration, and additive dosage of the casting solution on the membrane performances are discussed in detail, and differences between the PAN membrane, PDM/PAN blend membrane, and crosslinked PDM/PAN blend membrane are also discussed. We also studied the adsorption behaviors of the membranes to a positively charged dye and a negatively charged dye. Environmental scanning electron microscopy observation showed that the resulting positively charged membrane from such a blending, crosslinking, and coagulation procedure possessed a unique and uniform structure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1847–1854, 2005  相似文献   

5.
To improve the performance of nanofiltration (NF) membranes, a chiral mesogenic compound, a positively charged compound, and a negatively charged compound were grafted to chitosan, respectively. Series of novel composite NF membranes were prepared by over‐coating the polysulfone ultrafiltration membrane with the mixture of chitosan and modified chitosan. The chiral mesogenic compound, the positively charged compound, the negatively compound and their chitosan derivatives were characterized by infrared spectrophotometer, differential scanning calorimetry, polarized optical microscope; the structure of the membrane was characterized by scanning electron microscopy. The performance of composite NF membranes was strictly related to the novel compounds grafted to chitosan and its composition. The rejection reached the maximum of 95.7% for CaCl2 with P2‐7 composite NF membrane, corresponding flux was 3155 Lm?2h?1. The rejection reached the maximum of 93% for Na2SO4 with P3‐5 composite NF membrane, corresponding flux was 3879 Lm?2h?1. Comparing with conventional NF membranes, the membranes were used in low pressure with high flux, especially for the separation of high‐valence ions from solution. The membranes were typical charged NF membranes. POLYM. ENG. SCI., 57:22–30, 2017. © 2016 Society of Plastics Engineers  相似文献   

6.
Nanofiltration (NF) composite membranes based on poly(vinyl alcohol) (PVA) and sodium alginate (SA) were prepared by coating PVA/SA (95/5 in wt %) mixture solutions on microporous polysulfone (PSF) supports. For the formation of a defect free thin active layer on a support, the PSF support was multi‐coated with a dilute PVA/SA blend solution. The PVA/SA active layer formed was crosslinked at room temperature by using an acetone solution containing glutaraldehyde as a crosslinking agent. The prepared composite membranes were characterized with a scanning electron microscopy (SEM), a Fourier transform infrared spectroscopy (FTIR), an electrokinetic analyzer (EKA) and permeation tests: The thicknesses of the active layers were about 0.25 μm and 0.01 μm depending on the preparation conditions. The crosslinking reaction of the active layers were completed in less than three minutes via the formation of acetal linkage. The surface of the PVA/SA composite membrane was found to be anionic. The permeation properties of the composite membrane were as follows: 1.3 m3/m2 day of flux and > 95% of rejection at 200 psi for 1000 ppm PEG600 solution. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 347–354, 2000  相似文献   

7.
Macroporous poly(N‐isopropylacrylamide) (PNIPA) hydrogels were synthesized by free‐radical crosslinking polymerization in aqueous solution from N‐isopropylacrylamide monomer and N,N‐methylenebis (acrylamide) crosslinker using poly(ethylene glycol) (PEG) with three different number‐average molecular weights of 300, 600 and 1000 g mol?1 as the pore‐forming agent. The influence of the molecular weight and amount of PEG pore‐forming agent on the swelling ratio and network parameters such as polymer–solvent interaction parameter (χ) and crosslinking density (νE) of the hydrogels is reported and discussed. Scanning electron micrographs reveal that the macroporous network structure of the hydrogels can be adjusted by applying different molecular weights and compositions of PEG during polymerization. At a temperature below the volume phase transition temperature, the macroporous hydrogels absorbed larger amounts of water compared to that of conventional PNIPA hydrogels, and showed higher equilibrated swelling ratios in aqueous medium. Particularly, the unique macroporous structure provides numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to external temperature changes during the swelling and deswelling process. These macroporous PNIPA hydrogels may be useful for potential applications in controlled release of macromolecular active agents. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
Crosslinked sodium polyacrylate was prepared by solution polymerization with N,N‐methylene‐bisacrylamide (bisAM) as crosslinking agent; it was subsequently surface‐crosslinked by ethylene glycol diglycidyl ether (EGDE) and then was modified with inorganic salt to obtain a superabsorbent with water absorbency in 0.9 wt % NaCl aqueous solution at atmosphere and applied pressure (P ≈ 2 × 103 Pa) of 55 and 20 g.g?1, respectively. Moreover, it also had excellent hydrogel strength. The effects of reaction temperature, reaction time, neutralization degree (ND) of acrylic acid, amount of initiator, crosslinking agent, and surface‐crosslinking agent, mass ratio of inorganic salt to initial superabsorbent, molar ratio of sodium aluminate (NaAlO2) to potassium dihydrogen hyphosphate (KH2PO4) on water absorbency (WA) in 0.9 wt % NaCl aqueous, and the hydrogel modulus were investigated and optimized. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2532–2541, 2004  相似文献   

9.
cis,cis‐1,3,5‐Triaminocyclohexane (TAC) was synthesized and used to prepare composite nanofiltration (NF) membranes by interfacial polymerization with trimesoyl chloride (TMC). The surface elemental composition, morphology, and hydrophilicity of the prepared NF membranes were characterized. The separation performances were examined with various salts and polyethylene glycol (PEG400, PEG600) solutions. The effects of preparation conditions were also systematically studied. The NF membrane was negatively charged and exhibited a salt rejection in the order Na2SO4 (98.2%) > MgSO4 (90.8%) > MgCl2 (84.5%) > NaCl (54.6%). The water permeability was 1.56 L m?2 h?1 bar?1, and the molecular weight cutoff was 600 Da. The TAC/TMC membrane exhibited some characteristics that were different from the ones made from common diamines such as m‐phenylenediamine: (1) the surface was smoother, without a ridge‐and‐valley structure; (2) there were two kinds of crosslinking points in the polyamide chains; (3) the active layer was formed faster (only 5 seconds was required to reach a Na2SO4 rejection of 98%). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43511.  相似文献   

10.
Polysulfone (PSF) hollow fiber membranes were spun by phase‐inversion method from 29 wt % solids of 29 : 65 : 6 PSF/NMP/glycerol and 29 : 64 : 7 PSF/DMAc/glycol using 93.5 : 6.5 NMP/water and 94.5 : 5.5 DMAc/water as bore fluids, respectively, while the external coagulant was water. Polyvinyl alcohol/polysulfone (PVA/PSF) hollow fiber composite membranes were prepared after PSF hollow fiber membranes were coated using different PVA aqueous solutions, which were composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), maleic acid (MAC), and water. Two coating methods (dip coating and vacuum coating) and different heat treatments were discussed. The effects of hollow fiber membrane treatment methods, membrane structures, ethanol solution temperatures, and MAC/PVA ratios on the pervaporation performance of 95 wt % ethanol/water solution were studied. Using the vacuum‐coating method, the suitable MAC/PVA ratio was 0.3 for the preparation of PVA/PSF hollow fiber composite membrane with the sponge‐like membrane structure. Its pervaporation performance was as follows: separation factor (α) was 185 while permeation flux (J) was 30g/m2·h at 50°C. Based on the experimental results, it was found that separation factor (α) of PVA/PSF composite membrane with single finger‐void membrane structure was higher than that with the sponge‐like membrane structure. Therefore, single finger‐void membrane structure as the supported membrane was more suitable than sponge‐like membrane structure for the preparation of PVA/PSF hollow fiber composite membrane. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 247–254, 2005  相似文献   

11.
A novel coating technique, named as two‐way coating (TWC), was explored to prepare hollow fiber composite (HFC) nanofiltration (NF) membrane through interfacial polymerization from piperazine (PIP) and trimesoyl chloride (TMC) on the lumen side of hollow fiber polysulfone ultrafiltration membrane with an effective membrane area of 0.4 m2. The optimum preparation conditions were systematically investigated and obtained as follows: PIP 0.023 mol/L, TMC 0.0057 mol/L, air blowing rate 2.7 m/s for 30 min after aqueous coating, aqueous coating pressure 0.1 MPa, organic solution flowing rate 0.32 m/s, and heat treating time 3 min. The resultant HFC membrane showed a high selectivity of divalent ion and monovalent ion. Salt rejections of MgSO4 and NaCl were 98.13 and 18.6% with the permeate flux of 32.6 and 40.2 L m?2 h?1 at 0.7 MPa, respectively. Field emission scanning electron microscopy images indicated that composite membrane prepared by TWC technique had a uniform active layer from the upper end to the bottom of the hollow fiber. And the salt rejection and permeate flux showed almost no difference between different membrane sections. Stability results suggested that good reproducibility could be obtained by TWC technique for the preparation of high‐performance HFC NF membrane. The resultant NF membrane showed a high removal rate of chemical oxygen demand and chroma of landfill leachate which were approximately 100%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41187.  相似文献   

12.
Forward osmosis (FO) membranes were prepared by a coating method with poly(ethylene glycol) crosslinked sulfonated polysulfone (SPSf) as a selective layer. The poly(ether sulfone)/SPSf substrate was prepared by phase inversion. The composite membranes were characterized with respect to membrane chemistry (by attenuated total reflectance/Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy), hydrophilicity (by static contact angle measurement), and surface morphology (by scanning electron microscopy and atomic force microscopy). The FO performance was also characterized. The effects of the crosslinker concentration on the hydrophilicity and FO performance were investigated. The crosslinked membrane exhibited a high hydrophilicity with a lowest contact angle of 15.5°. Under FO tests, the membranes achieved a higher water flux of 15.2 L m?2 h?1 when used against deionized water as the feed solution and a 2 mol/L sodium chloride (NaCl) solution as the the draw solution. The membranes achieved a magnesium sulfate rejection of 96% and an NaCl rejection of 55% when used against a 1 g/L inorganic salt solution as the feed solution and a 2 mol/L glucose solution as the draw solution. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43941.  相似文献   

13.
Polyimide (PI) membrane has been proven to be an efficient approach for solvent recovery. However, the inherent fragility of the PI membrane limits the range of separation conditions and process economics. In this study, copolyimides were synthesized from 3,3′,4,4′‐benzophenone–tetracarboxylic dianhydride (BTDA) and 4,4′‐biamino‐3,3′‐dimethyldiphenyl–methane (DMMDA) by chemical imidization in a two‐step procedure. Then, a PI nanofiltration (NF) membrane was prepared through a phase‐inversion process for solvent recovery from lube oil filtrates. The results indicated that the immersion of the PI (BTDA–DMMDA) NF membrane in a 1,6‐diaminohexane/ethanol crosslinking agent solution carried on the chemical crosslinking modification, which could effectively improve the solvent resistance of the NF membrane. Moreover, the addition of inorganic salt in the polymer solution further enhanced the solvent resistance and pressure resistance of the membrane, which was favorable for the solvent recovery. The lubricant rejection was above 93%, and the solvent flux was about 30 L m?2 h?1 with the NF membrane prepared in optimum conditions, and this membrane showed great potential for future development in the application of solvent recovery from lube oil filtrates. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40338.  相似文献   

14.
海藻酸钠/聚砜复合纳滤膜的制备与性能研究   总被引:1,自引:0,他引:1  
以海藻酸钠(SA)水溶液为活性层铸膜液,分别以聚砜( PSF)、聚丙烯腈(PAN)为基膜,采用涂敷、热处理、交联剂交联的方法制备了荷负电复合纳滤膜,考察了海藻酸钠浓度、基膜、交联剂浓度等对膜性能的影响,制膜条件优化结果为,以聚砜超滤膜为基膜,海藻酸钠铸膜液质量分数为3%,交联剂为质量分数0.5%的硫酸和质量分数1%的戊...  相似文献   

15.
The addition of silica nanoparticles and poly(vinyl alcohol) (PVA) to polysulfone (PSF) membranes was used to modify the membrane morphology and enhance membrane performance. The central composite design of the response surface methodology was used to predict the maximum permeability and real salt rejection (Rreal) of the PSF membranes. The factors affecting the permeability and Rreal values of the PSF membranes were the silica (0–12 wt % PSF) and PVA (0–2 wt % PSF) contents. The optimized responses, membrane permeability, and Rreal obtained experimentally were 61.9260 L m−2 h−1 bar−1 and 97.5850%, respectively, with deviation from the predicted values of 34.72 and 15.84%, respectively. In the further characterization, the contact angle results showed that PVA was important in stabilizing the nanoparticle surfaces to prevent agglomeration in the polymeric matrix. The tensile strength test confirmed that the addition of silica nanoparticles improved the mechanical strength of the PSF membranes. However, the addition of PVA had a weakening effect on the mechanical strength of the PSF membranes. The addition of silica nanoparticles and PVA affected the typical asymmetric structures of the PSF membrane less, as shown in the scanning electron micrographs. This may have been due to the good incorporation of additives in the PSF membranes, as observed from the energy‐dispersive X‐ray and Fourier transform infrared spectroscopy results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 Liver Transpl, 2011. © 2011 AASLD.  相似文献   

16.
In the present study, a simple, inexpensive, nontoxic, and environmentally friendly polyethylene glycol (PEG) polymer was used to enhance the hydrophilicity of the forward osmosis (FO) membrane using various PEG concentrations as a pore forming agent in the casting solution of polyethersulfone/polysulfone (PES/PSF) blend membranes. A nonwoven PES/PSF FO blend membrane was fabricated via the immersion precipitation phase inversion technique. The membrane dope solution was cast on polyethylene terephthalate (PET) nonwoven fabric. The results revealed that PEG is a pore forming agent and that adding PEG promotes membrane hydrophilicity. The membrane with 1 wt% PEG (PEG1) had about 27% lower contact angle than the pristine blend membrane. The PEG1 membrane has less tortuosity (which reduces from 3.4–2.73), resulting in a smaller structure parameter (S value) of 277 μm, due to the presence of open pores on the bottom surface structure, which results in diminished ICP. Using 1 M NaCl as the draw solution and distilled water as the feed solution, the PEG1 membrane exhibited higher water flux (136 L m−2 h−1) and lower reverse salt flux (1.94 g m−2 h−1). Also, the selectivity of the membrane, specific reverse salt flux, (Js/Jw) showed lower values (0.014 g/L). Actually, the PEG1 membrane has a 34.6% higher water flux than the commercial nonwoven-cellulose triacetate (NW-CTA) membrane. By means of varied concentrations of NaCl salt solution (0.6, 1, 1.5, and 2 M), the membrane with 1 wt% PEG showed improved FO separation performance with permeate water fluxes of 108, 136, 142, and 163 L m−2 h−1. In this work, we extend a promising gate for designing fast water flux PES/PSF/PEG FO blend membranes for water desalination.  相似文献   

17.
A series of high temperature polymer electrolyte membranes were fabricated based on imidazolium poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) using methylimidazole (MeIm) and triethoxysilylpropyldihydroimidazole (SiIm) as quaternization reagents via the SN2 nucleophilic substitution. Meanwhile SiIm was also employed as a crosslinking agent and the crosslinked Si–O–Si network was constructed through a hydrolysis procedure of SiIm in an acid medium. Compared with the PPO‐100%MeIm membrane without the crosslinking structure, the imidazolium siloxane crosslinked PPO‐x%SiIm‐y%MeIm membranes exhibited increased acid doping contents, enhanced dimensional stabilities, improved mechanical properties and higher conductivities. The PPO‐30%SiIm‐70%MeIm/(198 wt% phosphoric acid) membrane displayed a conductivity of 0.08 S cm?1 at 180 °C without humidifying and a tensile strength of 6.4 MPa at room temperature. © 2019 Society of Chemical Industry  相似文献   

18.
Using Na+ form of perfluorosulfonic acid (PFSA) and poly(vinyl alcohol) (PVA) as coating materials, polysulfone (PSf) hollow fiber ultrafiltration membrane as a substrate membrane, PFSA‐PVA/PSf hollow fiber composite membrane was fabricated by dip‐coating method. The membranes were post‐treated by two methods of heat treatment and by both heat treatment and chemical crosslinking. Maleic anhydride (MAC) aqueous solution was used as chemical crosslinking agent using 0.5 wt % H2SO4 as a catalyst. PFSA‐PVA/PSf hollow fiber composite membranes were used for the pervaporation (PV) separation of isopropanol (IPA)/H2O mixture. Based on the experimental results, PFSA‐PVA/PSf hollow fiber composite membrane is suitable for the PV dehydration of IPA/H2O solution. With the increment of heat treatment temperature, the separation factor increased and the total permeation flux decreased. The addition of PVA in PFSA‐PVA coating solution was favorable for the improvement of the separation factor of the composite membranes post‐treated by heat treatment. Compared with the membranes by heat treatment, the separation factors of the composite membranes post‐treated by both heat treatment and chemical crosslinking were evidently improved and reached to be about 520 for 95/5 IPA/water. The membranes post‐treated by heat had some cracks which disappeared after chemical crosslinking for a proper time. Effects of feed temperature on PV performance had some differences for the membranes with different composition of coating layer. The composite membranes with the higher mass fraction of PVA in PFSA‐PVA coating solution were more sensitive to temperature. It was concluded that the proper preparation conditions for the composite membranes were as follows: firstly, heated at 160°C for 1 h, then chemical crosslinking at 40°C for 3 h in 4% MAC aqueous solution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
A systematic study was performed on the combination of support properties and polydimethylsiloxane (PDMS) coating conditions for the lab‐scale preparation of a defect‐free, thin film composite membrane for organophilic pervaporation. Support layers having comparable surface porosities were prepared from three polymers with different chemical composition (PVDF, PSF, PI). Their exact role on the deposition of the PDMS coating (i.e., wetting and intrusion) and the final membrane performance (i.e., effect on mass transfer of the permeants) was studied. The crosslinking behavior of dilute PDMS solutions was studied by viscosity measurements to optimize the coating layer thickness, support intrusion and wetting. It was found essential to pre‐crosslink the PDMS solution for a certain time prior to the coating. Dip time for coating the PDMS solution on the supports was varied by using automated dip coating machine. The performance of the synthesized membranes was tested in the separation of ethanol/water mixtures by pervaporation. Both flux and selectivity of the membranes were clearly influenced by the support layer. Resistance of the support layers increased by increasing the polymer concentration in the casting solutions of the supports. Increasing the dip time of the PDMS coating solution led to increased selectivity of the composite membranes. Scanning Electron Microscopy analysis of the composite membranes showed that this leads to a minor increase in the thickness of the PDMS top layer. Top layer thickness increased linearly with the square root of the dip time (t0.5) at a constant withdrawal speed of the support. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43670.  相似文献   

20.
Ultrafine fibers of bisphenol‐A polysulfone (PSF) were prepared by electrospinning of PSF solutions in mixtures of N,N‐dimethylacetamide (DMAC) and acetone at high voltages. The morphology of the electrospun PSF fibers was investigated by scanning electron microscopy. Results showed that the concentration of polymer solutions and the acetone amount in the mixed solvents influenced the morphology and the diameter of the electrospun fibers. The processing parameters, including the applied voltage, the flow rate, and the distance between capillary and collection screen, were also important for control of the morphology of electrospun PSF fibers. It was suggested that uniform ultrafine PSF fibers with diameter of 300–400 nm could be obtained by electrospinning of a 20 % (wt/v) PSF/DMAC/acetone (DMAC:acetone = 9:1) solution at 10–20 kV voltages when the flow rate was 0.66 ml h?1 and capillary–screen distance was 10 cm. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号