首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
溶胶-凝胶法制备长余辉发光材料SrAl2O4:Eu2+,Dy3+的研究   总被引:27,自引:2,他引:25  
用溶胶-凝胶法制备长余辉发光材料SrAl2O4∶Eu2+,Dy3+,选用柠檬酸合成前驱体柠檬酸盐,确定最佳烧结温度在1200~1250℃范围,比一般高温固相法制备该产物降低了200℃,其产物的发射光谱出现了明显"蓝移"现象.  相似文献   

2.
本文以硝酸镧为原料,采用燃烧法、溶胶-凝胶法、水热法制备氧化镧粉体,研究不同制备方法对粉体粒度和形貌的影响,同时系统地研究了水热法中反应温度、反应时间和料液浓度对粉体粒度的影响。实验结果表明,水热法制备的氧化镧在粉体颗粒的均匀性和分布上更有优势,通过对水热法各参数的研究,在反应温度140℃、反应时间8h、料液浓度0.75mol/L时,可稳定地制备出D50<0.3μm,分布<0.8的亚微米氧化镧粉体。  相似文献   

3.
轻稀土镧取代M型钡铁氧体超微粉末的合成与表征   总被引:3,自引:0,他引:3  
利用溶胶-凝胶自蔓延高温合成法制备了稀土镧掺杂钡铁氧体BaLaxFe12-xO19超微粉末。讨论了起始溶液pH值、柠檬酸配比、煅烧温度等对粉末性能参数的影响。用X射线衍射仪、扫描电子显微镜和振动样品磁强计等对粉末的结构、形貌和磁学性能进行了研究。  相似文献   

4.
用溶胶—凝胶法制备长余辉发光材料 Sr Al2 O4 ∶ Eu2 ,Dy3 ,选用柠檬酸合成前驱体柠檬酸盐 ,确定最佳烧结温度在 12 0 0~ 12 5 0℃范围 ,比一般高温固相法制备该产物降低了 2 0 0℃ ,其产物的发射光谱出现了明显“蓝移”现象。  相似文献   

5.
溶胶-凝胶燃烧合成法制备SmBO3粉体及其性能研究   总被引:1,自引:1,他引:0  
利用溶胶-凝胶燃烧合成法,在750℃热处理2 h的条件下制备了SmBO3粉体,颗粒大小在100 nm左右.红外吸收光谱显示材料在500~1400 cm-1波数范围内,存在较为集中的吸收峰.此外,由于Sm3+的6H5/2→6F9/2跃迁,使得SmBO3粉体在1.05~1.15μm的范围内反射率降低.因此,SmBO3粉体可能是一种性能较好的针对1.06和10.6μm激光的激光光防护材料和滤光功能材料.  相似文献   

6.
采用溶胶凝胶-自燃烧法合成了Ce0.8Y0.18Fe0.02O1.9纳米粉体,通过热重、X射线衍射、扫描电镜、透射电镜和交流阻抗谱等方法对试样进行研究。研究结果表明,采用溶胶凝胶-自燃烧法可直接合成纯相的具有立方萤石结构的固溶体Ce0.8Y0.18Fe0.02O1.9;合成粉体的平均粒径为10 nm~20 nm,具有高的烧结活性,在1400℃的烧结温度下,陶瓷样品的相对密度可达到97%;Ce0.8Y0.18Fe0.02O1.9电解质的离子导电性能良好,在600℃和800℃测试温度下,其电导率分别达到12.38 mS/cm和46.81 mS/cm。  相似文献   

7.
Li4SiO4-Y2O3的溶胶-凝胶法合成及离子导电性研究   总被引:3,自引:0,他引:3  
《稀土》2002,23(1):14-16
用溶胶-凝胶法制备了Li4SiO4-xY2O3(x=0~0.5)离子导体材料,并用DTA-TG、XRD及交流阻抗等技术对样品进行了测试,结果发现用溶胶-凝胶法可降低Li4SiO4的合成温度并可提高离子的导电性,适量Y2O3的掺入可增强基质的致密性,并可提高材料的导电性能.  相似文献   

8.
助熔剂对BAM:Eu2+荧光粉合成机理和发光强度的影响   总被引:1,自引:0,他引:1  
采用高温固相法制备了BaMgAl10O17:Eu2+ (BAM:Eu2+)蓝色荧光粉,采用X射线衍射、扫描电子显微镜和荧光光谱等手段,考察了不同助熔剂以及反应对BAM:Eu2晶体结晶度、物相纯度、粉体颗粒形貌和发光强度的影响,并对合成反应的机理进行了分析.结果表明,采用不同的助熔剂,均能制备出BAM:Eu2+发光材料,Eu2+的掺入对基质晶体结构没有明显的影响;相对不加助熔剂时,烧结温度大幅度降低,且制备的样品形貌更规整、颗粒大小更趋均一;随着烧结时间的延长,样品结晶更趋完整、杂相减少,粉体发光强度随之提高;随助熔剂用量的增加,粉体的发光性能得到改善,但助熔剂用量过量时,粉体结块、团聚,粉体的发光性能变差;采用不同的助熔剂,合成反应的机理发生变化,所得样品的结晶完整性、杂相组成和含量、发光中心的分布、粉体料径等性能产生相应变化,最终导致样品的发光性能发生改变,样品的特征发射峰强度随AlF3、H3BO3、MgF2、Li2CO3、无助熔剂依次降低.  相似文献   

9.
Y2O3:Eu荧光粉的制备方法及性质研究进展   总被引:2,自引:0,他引:2  
本文报道了近年来人们用来制备Y2O3:Eu粉末的多种方法(高温固相合成、微波热合成、溶胶-凝胶技术、共沉淀法、燃烧法、喷雾干燥法、高分子凝胶包膜法),并对各种合成方法所得产品的粒径、激发与发射光谱以及粉末的发光亮度做了分析和比较,同时对各种方法的特点进行了归纳和总结.  相似文献   

10.
以乙二醇为溶剂,柠檬酸为络合剂,用溶胶凝胶-自蔓延燃烧法合成La1-xSrxMnO3纳米粉体.探讨了制备过程中的最佳成胶温度,pH值,烧结温度;利用X衍射分析了掺锶量对晶体结构的影响;用数字电桥测定了不同掺锶量的样品的电导率;运用热重和红外光谱对粉体的形成过程进行了分析.实验结果表明,最佳制备条件是:成胶温度65℃,溶液初始pH值1.5,烧结温度800℃;粉体的电导率随掺锶量增加而增大,以x=0.3最大;自燃烧后La1-xSrxMnO3钙钛矿结构已初步形成且掺杂后钙钛矿结构没有改变,但晶胞参数发生了一定的变化.  相似文献   

11.
SrAl2 O4: Eu2 , Dy3 long afterglow phosphors were prepared by chemical coprecipitation method. Ammonium carbonate and ammonium hydrogen carbonate were used as the precipitants. The preparation of the SrAl2 O4: Eu2 ,Dy3 precursor was completed at room temperature by controlling the concentration of the metal-salt solution, pH value of the system, etc. The phosphors were prepared by sintering the precursor at 1000 ~ 1200 ℃ in a weak reducing atmosphere for 2 h. The XRD, SEM, excitation spectra, emission spectra and afterglow decay of the samples were tested and the optimal synthesis conditions of the SrAl2O4: Eu2 , Dy3 long afterglow phosphors prepared by precipitation method were determined. The phosphor which had good luminescent properties is prepared and its persistent time can reach more than 1600 min. In the coprecipitation process, a small amount of glucose operates to refe the luminescent powders. The particle size of the phosphor can be less than 1 μm. The sintering temperature of the sample prepared by the coprecipitation method is much lower than that of the one prepared by the high temperature solid state method.Compared with the high temperature solid state method, a clear blue shift occurs in the excitation and emission spectra of the samples.  相似文献   

12.
Nanoscale RE3 (RE=Ce, Tb) doped and codoped lutetium pyrosilicate Lu2Si2O7 (LPS) phosphors were prepared by using the sol-gel method. Heat treatment was performed in the temperature range from 900 to 1100℃. The crystal structure was analyzed by X-ray diffraction (XRD). The results showed that the β-type structure of LPS was obtained at 1100℃. The excitation spectra in the UV and VUV ranges and the emission spectra of the samples were measured at room temperature, and their luminescent properties were studied. The energy transfer from Ce3 to Tb3 in the codoped samples were observed and discussed.  相似文献   

13.
采用溶胶-凝胶法制备了Ca_(1-1.5x)MoO_4∶xEu~(3+)和Ca_(0.5)MoO_4∶0.25Eu~(3+),M~+(M=Li,Na,K)荧光粉,并对样品的物相结构、颗粒形貌及发光性能进行了分析。结果表明,样品属于四方晶系,颗粒接近八面体形状,大小为2~3μm。激发光谱显示,样品的激发中心分别位于364 nm、386 nm、396 nm、419 nm和466 nm,最大激发峰值位于396 nm。在396 nm近紫外光激发下,样品的发射中心分别位于596 nm、616 nm、656 nm、704 nm,特征发射峰为616 nm,Eu3+离子掺杂浓度为25%(体积分数)时发光强度最强,引入的3种电荷补偿剂M~+(M=Li,Na,K)中,Li+对发光强度的提高最为显著。  相似文献   

14.
(Y,Gd)BO3∶ Eu phosphors were prepared by co-precipitation precursors, and luminescent properties were investigated. The precursors were synthesized by introducing hydroxyl ion to mixed solution of rare earth nitrates and boric acid, either through adding ammonia(precursor 1)or through controlled release of hydroxyl ion of urea(precursor 2). The precursors were fired in air at 1000 ℃ for 2 h. Resulted phosphor synthesized with precursor 1 has non-uniformed particle with mean diameter of about 3 μm, while that with precursor 2 exhibits uniformed near spherical-like morphology with mean diameter of about 300 nm. Phosphors with the two methods exhibit same crystal structure as that of commercial one. Emission spectra of the samples indicate that the sample prepared with precursor 2 shows relative higher intensity(exited by 172 nm VUV)than that prepared with the other precursor.  相似文献   

15.
Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm. Luminescence properties were analyzed by measuring the photoluminescence spectra. The Ce^3+, Tb^3+-codoped Sr2Al2SiO7 phosphors showed four main emission peaks: one at 414 nm for Ce^3+ and three at 482, 543, and 588 nm for Tb^3+. The emission spectra of the samples with different doping concentrations showed that the Tb^3+ emission was dominant because of the persistent energy transfer from Ce^3+. The decay characteristic was better than that prepared by the solid-state process in the comparable condition. The codoped phosphor displayed long persistent white phosphorescence.  相似文献   

16.
Nanoscale RE3+ (RE=Ce, Tb) doped and codoped lutetium pyrosilicate Lu2Si2O7 (LPS) phosphors were prepared by using the sol-gel method. Heat treatment was performed in the temperature range from 900 to 1100 °C. The crystal structure was analyzed by X-ray diffraction (XRD). The results showed that the β-type structure of LPS was obtained at 1100 °C. The excitation spectra in the UV and VUV ranges and the emission spectra of the samples were measured at room temperature, and their luminescent properties were studied. The energy transfer from Ce3+ to Tb3+ in the codoped samples were observed and discussed.  相似文献   

17.
The long afterglow phosphor CaAl2Si2O8:Eu2 , Dy3 was prepared by a sol-gel method. The sol-gel process and the structure of the phosphor were investigated by means of X-ray diffraction analysis (XRD). It is found that the single anorthite phase formed at about 1000 ℃, which is 300 ℃ lower than that required for the conventional solid state reaction. The obtained phosphor powders are easier to grind than those of solid state method and the partical size of phosphor has a relative narrow distribution of 200 to 500 nm. The photoluminescence and afterglow properties of the phosphor were also characterized. An obvious blue shift occurs in the excitation and emission spectra of phosphors obtained by sol-gel and solid state reaction methods. The change of the fluorescence spectra can be attributed to the sharp decrease of the crystalline grain size of the phosphor resulted from the sol-gel technique.  相似文献   

18.
Single-phase Y2BaAl4SiO12:Tb3+,Eu3+phosphors with adjustable luminescence were successfully prepared by high-temperature solid-state reaction method.The structural,luminescent properties and ene rgy transfer(ET) process of Y2BaAl4SiO12:Tb^(3+),Eu3+phosphors were syste matically analyzed with the help of X-ray diffraction(XRD),scanning electron microscopy(SEM),excitation spectra,emission spectra and photoluminescence decay curves.Tunable luminescence ranging from green through yellow and definitively to red can be achieved by elevating amounts of Eu3+ions in Tb3+,Eu3+co-doped samples.Besides,the ET mechanism and efficiency were also analyzed and the maximum ET efficiency is 67%.All the results show that Y2BaAl4SiO12:Tb3+,Eu3+phosphors can be used in solid-state lighting.  相似文献   

19.
Nanoparticlesandnanoclustermaterialsareanewclassofadvancedmaterialsexhibit inguniquechemicalandphysicalpropertiescomparedtothoseoftheirbulkmaterials[1 ] .Y2 O3 :Euisanefficientred emissionphosphorwhichhasbeenusedinfluorescentlights (FL)andcathoderaytube (CRTs…  相似文献   

20.
Lu3Al5O12(LuAG) thin films with different Tb^3+ concentration were prepared on carefully cleaned (111 ) silicon wafer by a Peehini process and dip-coating technique. Heat treatment was performed in the temperature range from 800 to 1100 ℃. The crystal structure was analyzed by XRD. The results show that LuAG film starts to crystallize at about 900 ℃, and the particle size increases with the sintering temperature. Excitation and emission spectra of Tb^3+ doped LuAG films were measured. The effects of heat-treatment temperature and doping concentration of Th3 + on the luminescent properties were also investigated. For a comparison study, Th^3+-doped LuAG powders were also prepared by the same sol-gel method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号