首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
目前,有关钢材表面热浸镀铝层中添加锰元素及扩散退火处理对镀层组织、结构及性能的影响研究很少。采用热浸镀工艺在Q235钢表面制备纯铝及Al-2%Mn,Al-9%Mn,Al-13%Mn铝锰合金镀层,并进行扩散退火处理。通过XRD、SEM及EDS等分析了扩散退火后镀层的组织结构和表面形貌,用划痕法测试了各镀层的抗划擦性能。结果表明:经扩散退火后,4种镀层都出现了Fe4Al13相,其中铝锰合金镀层中出现多种铝锰金属化合物,如Al8Mn5,MnAl6,Mn3Al10;铝锰镀层的抗划擦性能约为纯铝镀层的1.5倍,Mn元素的加入使合金镀层的抗划擦性能有显著提高。  相似文献   

2.
袁超  李华鑫  冯婷婷  张锦  姜发同  马秋 《材料保护》2022,55(3):14-18+27
过去几年,热成型镀层钢板被广泛用于汽车轻量化零部件,以满足汽车工业日益严苛的燃油消耗、温室气体排放和乘员安全性法规要求。利用金相显微镜、扫描电子显微镜和盐雾试验箱等设备,对裸板、锌基镀层和铝硅镀层热成型钢板的形貌和腐蚀性能进行对比分析。结果表明:3种热成型材料的金相组织均为马氏体和少量残余奥氏体组织;铝硅镀层和锌基镀层热成型钢板镀层完整,未出现贯穿到基材的裂纹;热成型裸板脱碳层深度约为10μm,铝硅镀层由α-Fe相、Fe2Al5相、FeAl相和Fe2Al5相4层结构组成,锌基镀层主要由α-Fe相组成;裸板、铝硅镀层、锌基镀层热成型钢板在中性盐雾环境下出现5%红锈的时间分别为6,76,96 h,腐蚀深度分别为257,134,66μm;经电泳处理后的裸板、铝硅镀层、锌基镀层热成型钢板在中性盐雾环境下的腐蚀宽度分别为75.6,42.3,143.8μm,腐蚀深度分别为32.2,7.0,2.5μm,抗腐蚀性能排序为锌基镀层电泳板>铝硅镀层>裸板。  相似文献   

3.
目的 提升6061-T6铝合金/DP600双相钢电阻点焊接头的力学性能,以满足该焊接结构在汽车工业中的应用。方法 对6061-T6铝合金与DP600双相钢分别进行了直接电阻点焊试验及添加Ni中间层的电阻点焊试验,采用光学显微镜、扫描电子显微镜及能谱仪分析了接头界面宏微观组织、化学成分、元素分布等,此外还采用接头拉剪试验进行了2种接头的力学性能测试,并对接头的断口形貌及断裂模式进行了分析。结果 直接点焊接头熔核界面形成了厚度约为2.5μm的金属间化合物层,主要金属间化合物为靠近铝合金侧的Fe2Al5及靠近高强钢侧的Fe4Al13。直接点焊接头的拉剪载荷为3.1 kN,失效形式为界面断裂,断口呈以脆性为主的混合断裂特征。添加Ni中间层的点焊接头界面形成了Ni4Al13、Ni2Al5金属间化合物,抑制了焊接过程中Al-Fe互扩散并降低了Al-Fe金属间化合物的形成以及硬脆性Al-Fe金属间化合物对接头力学性能的影响,使...  相似文献   

4.
王辉 《功能材料》2022,(7):7163-7168
针对热电池内部导线易腐蚀问题,采用冷轧的方法制备了Al/Cu/Al复合带作为新型导线,应用SEM,XRD,EDX等技术研究了热处理工艺对复合带金属间化合物增长速度以及电导率的影响。结果表明,铜铝复合带抗蚀性和导电性均优于现在广泛使用的纯镍带;高温下复合带有显著的互扩散,扩散层厚度的平方(h2)与保温时间为线性关系,界面的迁移过程受原子的扩散控制;复合带中扩散层相分别是Cu-Cu9Al4-Cu3Al2-CuAl-CuAl2-Al,这些低电导率金属间化合物的存在使复合带电导率降低;复合带电导率随扩散层厚度增加而降低表现为3个阶段:(1)快速下降区(<25μm)、(2)减速下降区(25~35μm)、(3)加速下降区(>35μm),导致现象的原因为复合带界面化合物相总含量和其中CuAl2与Cu9Al4含量的相对变化。  相似文献   

5.
以FeCoNiCrMn高熵合金为中间层,获得高质量的AZ31B/不锈钢电阻点焊接头。分析过渡区与两侧母材的反应扩散行为,检测接头性能并优化焊接工艺。结果表明:包含FeCoNiCrMn颗粒的过渡区成功连接镁、钢两母材。镁合金侧界面主要是颗粒周围反应生成的Fe4Al13金属间化合物;而不锈钢侧边界主要由(Fe,Ni)固溶体和Fe4Al13金属间化合物两部分组成。拉剪载荷F随焊接电流I和焊接压力P的增加,焊接时间t的延长,呈现出先升高后降低的趋势,在18.2~22.5 kA,15~35周波,2.0~10.6 kN的实验工艺范围内,添加高熵合金镁/钢点焊接头拉剪载荷在3.2 kN以上,最大拉剪载荷为5.605 kN,相比未添加高熵合金镁/钢点焊接头拉剪载荷提高了397%。高熵合金过渡层形成了大量(Fe,Ni)固溶体,减少Fe4Al13脆性金属间化合物的生成,有效提高了接头的力学性能。  相似文献   

6.
杜金超  郝宏波  李华  焦佩英  龚沛 《功能材料》2023,(12):12177-12182
以Fe81Ga15.5Al3.5合金为基体向其中掺杂Ce元素,研究(Fe81Ga15.5Al3.5)100-xCex(x=0, 0.2, 0.4, 0.6, 0.8, 1.0)合金微观结构和磁性能的变化。结果显示:Fe81Ga15.5Al3.5合金的晶粒形状为柱状晶,加入Ce元素后,晶粒形状变为树枝晶。少量Ce元素加入时,(Fe81Ga15.5Al3.5)100-xCex合金的相结构仍以A2相为主;当x>0.8%时,合金的相结构由A2相和CeCa2相组成。Ce元素的加入可以改变合金[100]晶向的取向性;合金的晶格常数随着Ce含量的增加而逐渐减小。在扫描电镜下,可以观察到Fe81Ga  相似文献   

7.
锆合金表面涂层研究作为提高核燃料包壳事故容错能力的重要技术手段之一, 能够有效解决失水事故下锆水反应的问题。Zr2Al3C4以其优异的抗氧化性能和适用于核环境的化学组分而成为锆合金包壳的候选涂层材料之一。由于Zr2Al3C4涂层与锆合金基底之间的元素扩散以及热膨胀系数不匹配等问题, 在其上制备Zr2Al3C4涂层的相关研究较少。本研究通过磁控溅射结合后续热处理工艺, 以Al/Mo-C作为扩散屏障层, 在锆合金基底上制备Zr2Al3C4涂层。结合X射线衍射仪、扫描电子显微镜和透射电子显微镜等分析手段, 研究了Al/Mo-C中间层对涂层的相和微观结构的影响。结果表明, 在800 ℃退火3 h后, 未添加中间层的涂层开裂, 同时由于Zr-Al-C涂层与基底之间存在明显的元素扩散, 导致Zr2Al3C4无法成相。Al/Mo-C中间层作为扩散屏障, 能够有效阻止退火过程中Zr-Al-C涂层和基底之间的元素扩散, 从而大大降低Zr-Al-C涂层与标准化学量比的偏差, 有利于最终涂层中Zr2Al3C4相的形成。此外, 该扩散屏障层能够抑制Zr2Al3C4涂层在退火过程中产生裂纹, 同时将退火态涂层与锆合金基底的结合力提高30 N。  相似文献   

8.
采用真空扩散连接方法研究Fe/Al异质金属接头界面组织演变规律、金属间化合物(intermetallic compound,IMC)生长动力学及力学性能。结果表明:焊接温度为550 ℃时,接头界面无IMC生成,当焊接温度超过575 ℃时,界面由Fe2Al5及少量FeAl3 IMC构成,且随焊接温度升高IMC层迅速长大。在120 min保温时间条件下,接头剪切强度随焊接温度的升高先增加后降低,当焊接温度为575 ℃时,接头剪切强度达到最大值37 MPa。在550~625 ℃范围内,基于热力学分析得出Fe2Al5的吉布斯自由能ΔGFe-Al最低,而FeAl3的ΔGFe-Al次之,在接头界面处IMC生成顺序为Fe2Al5→FeAl3。Fe/Al接头界面IMC的生长随焊接温度呈抛物线规律,其生长激活能为282.6 kJ·mol-1。在575,600,625 ℃条件下,界面IMC的生长速率分别为1.13×10-14,3.59×10-14,1.21×10-13 m2·s-1。  相似文献   

9.
针对在铝/钢焊接过程中,钢的表面金属镀层对铝/钢激光熔钎焊接头性能有着重要影响的问题,研究铝合金在不同金属镀层的低碳钢表面的铺展效果,通过SEM对不同金属镀层下熔钎焊接头界面微观组织形态、金属间化合物厚度、种类等进行分析,并进一步研究不同金属镀层下铝/钢接头的力学性能及断口形貌。结果表明:钢表面的金属镀层对铝/钢激光熔钎焊过程中5A06铝合金在钢上的铺展与浸润有着较大的影响,其中5A06铝合金在镀铝钢上的铺展效果最佳,且铝合金与镀铝锌钢熔钎焊的接头抗拉性能最好,达到母材铝合金的70%。铝/钢界面金属间化合物主要由铝铁金属间化合物组成,其中在镀铝钢、镀铝锌钢、镀锌钢中主要存在Fe2Al5,FeAl3,FeAl等金属间化合物,在镀镍钢界面中还存在Fe4Al13等金属间化合物。  相似文献   

10.
为制备出以Ni2Al3为主相的金属间化合物涂层,将Ni粉、Al粉和Al2O3粉按质量比20∶6∶5混合均匀,利用低压冷喷涂方法将混合粉体喷涂到45钢基体表面,制备Ni-Al预涂层,再将预涂层在520℃氩气环境下保温12 h,采用X射线衍射(XRD)和扫描电镜(SEM)对涂层组织和物相进行了分析与表征,测试了涂层的结合力和滑动摩擦磨损特性。结果表明:预涂层经热处理转变为Ni2Al3金属间化合物涂层后,表现出良好的减摩、耐磨性能。涂层中Ni和Al固相转变为金属间化合物的驱动力是热处理提供的热能和粉体强烈塑性变形后的形变能的共同作用。  相似文献   

11.
目的研究加热温度、加热时间等工艺参数对Al-Si镀层材料在热成形过程中存在的表面颜色差异、镀层厚度和扩散层厚度的影响规律,及影响零件表面颜色差异的主要原因。方法在不同加热时间及加热温度条件下,对厚度为1.0 mm的新日铁Al-Si镀层材料进行热冲压试验,测量热成形零件的镀层厚度和扩散层厚度,并对典型不同颜色零件表面进行SEM及EDS分析研究。结果 Al-Si镀层热成形零件表面颜色与加热温度和加热时间存在较好的对应关系,同时镀层厚度及扩散层厚度随着加热时间的增加及加热温度的提高而增大,Al-Si镀层热成形零件表面的颜色与镀层中不同铁氧化物的混合比例存在较好的对应一致性。结论Al-Si镀层热成形零件表面颜色的状态可以间接反应镀层厚度及扩散层厚度。  相似文献   

12.
碳钢坩埚表面渗铝复合涂层   总被引:1,自引:0,他引:1  
以碳钢板为基板材料, 通过表面渗铝和高温化学反应在其表面形成复合保护涂层。研究了反应层厚度与反应温度、时间之间的关系, 并用光学显微镜、XRD对涂层形貌、相组成进行了表征。实验结果表明: 反应产物层厚度随反应温度、时间的增加而增加; 复合涂层由过渡层和反应产物层组成, 过渡层组成为Fe3Al及少量Fe2Al5、Fe14Al86、Al2O3, 反应产物层组成为TiB2、MgO和少量的Mg2TiO4、Mg2B2O5、Fe3Al、FeAl、Ti2B5。   相似文献   

13.
包埋渗铝法可在钢基体表面制备出一层致密、坚固、连续的Fe-Al渗层,以改善基体性能。本文在不同温度和不同时间下对Q235低碳钢进行包埋渗铝,形成Fe-Al渗层,采用X射线衍射、扫描电镜及能谱分析等方法研究了渗铝层的物相结构、表面及截面形貌和成分,采用显微硬度仪测量了截面硬度。结果表明,不同渗铝温度下获得的渗铝层,主要含有Fe2Al5和FeAl3两相,且750℃得到的渗层存在较多Fe2Al5相;随着渗铝温度升高,Fe-Al渗层厚度增加,Al原子扩散系数增大,但显微硬度降低;不同渗铝时间下制备的渗铝层,物相仍以Fe2Al5和FeAl3为主,但随着渗铝时间延长,FeAl3含量减少,且Al原子扩散系数变大,渗层显微硬度略有降低。在进一步分析Fe-Al渗层形成的热力学与动力学基础上,总结了渗铝层形成的扩散机制。  相似文献   

14.
Aluminum Coatings for Steel   总被引:3,自引:0,他引:3  
Aluminum coated steel possesses excellent oxidation and corrosion resistance in sulfur and marine: environments and can substitute for expensive alloy of steels. Hot dip aluminizing (HAD) and pack cementation calorizing (CAL) are dealt with in detail. IN HDA coats, some alloying action takes place, when the substrate is dipped in molten Al at 973 K for 1-2 minutes. The coat consists of an outer pure Al layer, followed by a hard intermetallic layer consisting of FeAl3 and Fe2Al5, forming a serrated interface with the base. Isothermal holding of such samples at 773-933 K for 10 minutes leads to further diffusion and phase changes. This improves resistance to thermal shock and bending. In CAL coats, the process parameters (1173-1223 K/2-4 h and pack composition), were optimized, resulting in appreciable alloying. The surface layer consists of Fe3Al and FeAl, which is comparable to the inner alloy layer of HDA coats. The structures/ property correlation is carried out for both coatings and the results compared.  相似文献   

15.
采用真空熔覆技术制备了WC-氧化石墨烯(GO)/Ni复合熔覆层,运用扫描电镜、能谱仪、X射线衍射仪观察并分析在不同温度下熔覆层内显微形貌的变化与物相组成。结果表明:在ZG45表面制备了组织致密、与基体形成良好冶金熔合的WC-GO/Ni复合熔覆层;熔覆层的微观结构组成从表面至基体依次是约1.5 mm厚的复合层、360 μm左右的过渡层、50 μm左右的扩散熔合层和100 μm左右的扩散影响层,其主要组成相有Cr7C3、FeNi3、WC、Cr23C6、Ni3Si、C、Fe7W6、γ-Ni固溶体等,FeNi3、Fe7W6分散在冶金熔合带,扩散影响区主要组织为珠光体;复合区的物相尺寸小于界面区的物相尺寸,熔覆层形成过程中复合区的金属颗粒变化先于界面区,凝固时熔化不完全的颗粒表面长出团簇物(Cr7C3/Cr23C6),随着保温长大逐渐变成针状物镶嵌在Ni基固溶体中。   相似文献   

16.
The structures of intermetallic alloy layers formed during immersion of H13 tool steel into an aluminium die casting alloy melt have been studied by X-ray diffraction. Energy dispersive spectroscopy (EDS) analysis on the intermetallic phases was also conducted. A thick composite layer away from the H13 steel substrate consisted of irregular intermetallics and solidified cast alloy. A thin intermetallic layer was present between the thick composite layer and an inner compact layer next to the steel substrate. The intermetallic phase in the composite layer was found to have a cubic structure, bcc-(FeSiAlCrMnCu). The thin layer was identified to be structurally isomorphous with hexagonal H-Fe2SiAl8. The compositional difference between H and bcc intermetallic phases was mainly that the latter consisted of a higher amount of Cr+Mn+Cu. This is consistent with the suggestion that chromium, manganese and copper stabilise bcc phase at the expense of H phase. The inner compact layer next to the steel substrate was identified to be isomorphous with orthorhombic η-Fe2Al5.  相似文献   

17.
The nanoindentation test has been applied to evaluate the mechanical properties such as hardness, elastic moduli and deformation behaviors of Fe4N iron nitride layers produced on Armco iron and En40B steel by plasma nitriding, and PVD-TiN coatings deposited on En40B with or without prior plasma nitriding treatment. Results showed that the Fe4N layer produced on En40B exhibits higher hardness than that on Armco iron. This is attributed to the effect of the alloy compositions, especially Cr element. However, similar elastic modulus values to that of bulk ferrous alloys have been found for Fe4N layers produced on both Armco iron and En40B. Under lower loads, TiN coatings on nitrided substrate behave quite the same in hardness and elastic modulus as TiN coatings on untreated En40B. Whilst with increasing indentation load and depth, duplex treated (i.e., combined plasma nitriding and PVD-TiN coating) En40B possesses higher composite hardness, elastic modulus and load bearing capacity than TiN coated base material.  相似文献   

18.
为了改善C/C-ZrC-SiC复合材料在高超声速飞行器热防护领域的使用性能,采用低压悬浮浸渗法制备出Fe基高温合金涂层封填C/C-ZrC-SiC复合材料。利用XRD、SEM、EDS等手段研究氧乙炔焰烧蚀前后Fe基高温合金涂层封填C/C-ZrC-SiC复合材料表层微观结构演变规律,阐明了Fe基高温合金涂层对C/C-ZrC-SiC复合材料烧蚀行为的影响。结果表明:C/C-ZrC-SiC复合材料在1 650℃的大气环境下并通过低压悬浮浸渗法浸渗2 h后,其表层形成一层均匀、致密、且结合紧密的Fe基高温合金涂层。在2 500℃下烧蚀180 s后,改性后的C/C-ZrC-SiC复合材料表面出现较小的烧蚀坑,质量烧蚀率相比未表面改性的试样降低了8%,线烧蚀率降低了35%。且表面生成一层均匀致密的Fe2O3-ZrO2复合氧化物保护层,大大降低了表面裂纹、孔洞等缺陷的产生,从而降低了氧的扩散速率及缺陷带来的应力集中。最终Fe基高温合金覆盖层提高了C/C-ZrC-SiC复合材料的高温抗氧化性和抗机械剥蚀性能。   相似文献   

19.
H. C. Chen  E. Pfender 《Thin solid films》1996,280(1-2):188-198
Microstructure and fracture surface morphologies were characterized for a cross-sectional plasma-sprayed Ni---Al alloy coating-mild steel substrate system by scanning electron microscopy, electronic probe microanalysis (EMPA) and transmission electron microscopy. The plasma-sprayed Ni---Al coating-steel substrate interface was found to be of pure metallurgical nature. The bonding layer consisting of Fe3Al closely relates to exothermic reactions from Ni and Al during spraying. Ni3Al, the product from the Ni---Al reaction, and Fe3Al kept a fixed crystallographic orientation relationship. From the coating-substrate interface toward the coating surface, the fracture mode changes from preferential interlamellar fracture, to intersplat cleavage fracture, and finally to quasi-cleavage fracture. The changes are thought to be related to the contact condition between splats. Microstructural changes observed through the coating thickness seem to be caused by the non-uniform cooling rate distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号