首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
单甲基肼还原Np(Ⅴ)的反应动力学   总被引:1,自引:1,他引:0  
用分光光度法研究了HNO3介质中单甲基肼(MMH)还原Np(Ⅴ)的动力学行为.通过考察还原剂浓度和酸度等条件对Np(Ⅴ)动力学过程的影响,确定了反应的动力学速率方程为-dc(Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.36(MMH)c(H+),在温度θ=35℃,离子强度为2 mol/L时,反应速率常数k=0.004 79(mol/L)-1.36/min.研究了离子强度、c(U(Ⅵ))和温度对反应的影响.结果表明,离子强度和c(U(Ⅵ))对反应速率无显著影响;反应活化能为60.43 kJ/mol,随着温度的升高,反应速率加快.并在此基础上推测了可能的反应机理.  相似文献   

2.
二甲基羟胺还原Np(Ⅵ)的反应动力学   总被引:2,自引:2,他引:0  
用分光光度法研究了HNO3介质中二甲基羟胺(DMHAN)还原Np(Ⅵ)的动力学。通过考察还原剂浓度和酸度等条件对Np(Ⅵ)动力学过程的影响,确定了反应的动力学速率方程为-dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c(DMHAN)/c0.6(H+),在温度θ=25℃、离子强度I=4.0 mol/kg时,速率常数k=289.8(mol/L)-0.4/min。研究了离子强度c、(U(Ⅵ))和温度等因素对反应的影响。结果表明,离子强度和c(U(Ⅵ))对反应速率无显著影响,25℃时反应活化能为53.3 kJ/mol;随着温度的升高,反应速率加快。并在此基础上推测了可能的反应机理。  相似文献   

3.
采用分光光度法研究了HNO3溶液中U(Ⅳ)还原Np(Ⅴ)的反应,获得了动力学方程-dc (Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.7 (U(Ⅳ))c1.9 (H+)c (NO-3),25℃时反应速率常数k=(6.37±0.49)×10-3 L3.6/(mol 3.6•min),反应活化能Ea=60.13 kJ/mol。结果表明,浓度为0~4.2×10-2mol/L的U(Ⅵ) 对U(Ⅳ)还原Np(Ⅴ)的反应几乎没有影响,并探讨了可能的反应机理。  相似文献   

4.
研究了氨基羟基脲(HSC)浓度、H~+浓度、NO_3~-浓度、Fe3+浓度、UO2+2浓度、反应温度对氨基羟基脲与Np(Ⅵ)还原反应速率的影响,获得了其动力学方程。实验结果表明:增加氨基羟基脲浓度和提高反应温度,降低H~+浓度和NO_3~-浓度,可以提高氨基羟基脲与Np(Ⅵ)还原速率;在UO2+2存在或Fe3+浓度小于1×10-3 mol/L时,对氨基羟基脲与Np(Ⅵ)的还原没有明显影响。氨基羟基脲还原Np(Ⅵ)的动力学方程式为:-dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c2.52(HSC)c-0.53(H+)c-0.61(NO_3~-),在4.00℃时k=(1 037±60)(mol/L)-1.40·s-1,活化能Ea=(64.03±6.4)kJ/mol。  相似文献   

5.
采用分光光度法研究了0.1~0.4mol/L稀硝酸体系中N,N-二甲基羟胺(DMHAN)与亚硝酸的反应动力学,包括硝酸浓度、亚硝酸浓度、二甲基羟胺浓度、离子强度、温度等条件的影响。稀硝酸体系中二甲基羟胺与亚硝酸反应的动力学方程为:-dc(HNO0.452)/dt=kc1.26(HNO2)c0.85(DMHAN)c(H+)在20℃,离子强度为0.50mol/L时,k=3.09(mol/L)-1.56·s-1,Ea≈55.1kJ/mol;反应中,亚硝酸与二甲基羟胺的表观反应计量比约为2.5∶1。  相似文献   

6.
用分光光度法研究了硝酸体系中特丁基肼还原Np(Ⅵ )的动力学。考察了特丁基肼浓度、酸度、NO-3 浓度、UO2 + 2 浓度、Fe3 + 浓度以及温度等对反应速率的影响。求出了反应动力学方程 :-dc(Np(VI) ) /dt =kc(Np(Ⅵ) )c0 .9(TBH) /c0 .75(H+ )。 2 5℃时的速率常数 :k=5 .4 4 (mol/L) -0 .15·min-1。反应的表观活化能 :Ea=6 1.2kJ/mol。在所研究的浓度范围内 ,NO-3 ,UO2 + 2 ,Fe3 + 对反应速率影响较小 ;而升高温度能显著提高反应速率  相似文献   

7.
特丁基肼(TBH)是一种新型无盐还原剂,能有效还原Np(Ⅵ),而对Pu(Ⅳ)的还原则缓慢。在所有的肼类衍生物中,TBH对Np(Ⅵ)、Pu(Ⅳ)的还原速率差别最大,有望实现Np、Pu有效分离。 本工作利用分光光度法研究了硝酸体系中特丁基肼还原Np(Ⅵ)的动力学。研究了特丁基肼浓度、硝酸浓度、温度对还原速率的影响。实验结果表明,该反应的速率方程可表示为: -dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c(TBH)0.9c(H )-0.75 25℃时,反应速率常数k=5.44(mol/L)-0.15·min-1,反应活化能为61.26kJ/mol。 探讨了离子强度、UO22 浓度、Fe3 浓度对还原速率的影响。结果表明:改变离子强度和  相似文献   

8.
采用分光光度法,对硝酸体系中羟胺(HAN)还原Fe(Ⅲ)的动力学进行了研究,得出了反应速率方程为-dc(Fe(Ⅲ))/dt=k·c~(0.56)(Fe(Ⅲ))·c~(0.88)(HAN),表观速率常数k=-(4.08±0.15)×10~(-4)(mol/L)-0.44·s~(-1);并研究了乙异羟肟酸(AHA)与Fe(Ⅲ)络合对该氧化还原反应的影响,结果显示,反应速率方程变为-dc(Fe(Ⅲ))/dt=-(2.83×10-4-536c3(AHA))·c~(0.76)(Fe(Ⅲ))·c~(0.60)(HAN),反应速率常数随AHA浓度增大而降低,且与AHA浓度的3次方成线性关系,Fe(Ⅲ)浓度对反应速率影响增大,而HAN浓度对反应速率影响减小。  相似文献   

9.
研究了Pu存在条件下HNO2氧化U(Ⅳ)的反应,并考察了HNO2浓度、反应温度、HNO3浓度、Pu浓度对U(Ⅳ)氧化速率的影响。结果表明:Pu对HNO2氧化U(Ⅳ)的反应具有显著催化作用;获得了Pu催化条件下HNO2氧化U(Ⅳ)的动力学方程:-dc(U(Ⅳ))/dt=kc(U(Ⅳ))c1.3(HNO3)c1.3(NO-2),得到了29℃时的反应速率常数k=(0.69±0.04)L2.6/(mol 2.6·min)。并对反应历程进行了探讨。  相似文献   

10.
本工作研究HNO3体系下AHA与HNO2的反应动力学。研究得到该反应的反应动力学速率方程式为-dc(HNO2)/dt=kc(HNO2)c0.25(AHA)c(HNO3)。在t=10℃、I=0.5mol·kg-1条件下,反应速率常数k=(0.4814±0.0375)L1.25·mol-1.25·s-1。实验研究了反应温度对反应速率的影响。结果表明,随着反  相似文献   

11.
研究了甲醛肟(FO)与Pu(Ⅳ)的还原反应动力学,其动力学方程式为-dc(Pu(Ⅳ))/dt=kc(Pu(Ⅳ))c1.61(FO)c-0.88(H+),在18.7℃时,反应速率常数k=(110.39±7.70)(mol/L)-0.73/s,活化能为(68.82±3.00)kJ/mol。研究了甲醛肟浓度、H+浓度、硝酸根浓度、Fe3+浓度、UO22+浓度以及温度对甲醛肟与Pu(Ⅳ)还原反应速率的影响。结果表明:增加甲醛肟浓度、降低UO22+和H+浓度、增加Fe3+浓度以及升高温度,均使Pu(Ⅳ)还原速度增加;硝酸根浓度对甲醛肟还原Pu(Ⅳ)的速率基本无影响。  相似文献   

12.
研究了高氯酸介质中氨基羟基脲与HNO2的还原反应动力学,其动力学方程式为-dc(HNO2)/dt=kc(HNO2)c0.25(HSC)c0.42(H+),在1.0℃时反应速率常数k=(1.05±0.05)(mol/L)-0.67•s-1,活化能为(73.1±3.0)kJ/mol。研究了氨基羟基脲浓度、H+浓度、硝酸根浓度对氨基羟基脲与HNO2还原反应速率的影响。结果表明:增加氨基羟基脲浓度和H+浓度,HNO2还原速度增加;高氯酸根浓度对氨基羟基脲还原HNO2速率基本无影响。  相似文献   

13.
研究了氨基羟基脲(HSC)与Pu(Ⅳ)的还原反应动力学,其动力学方程式为:-dc(Pu(Ⅳ))/dt=kc(Pu(Ⅳ))c1.06(HSC)c-0.43(H+)c-0.58(NO3-),在22.1℃时反应速率常数k=(11.8±1.1)(mol/L)-0.046•s-1,活化能为(71.0±1.0)kJ/mol。研究了氨基羟基脲浓度、H+浓度、硝酸根浓度、Fe3+浓度、UO22+浓度对氨基羟基脲与Pu(Ⅳ)还原反应速率的影响,增加氨基羟基脲浓度,降低H+浓度、硝酸根浓度,Pu(Ⅳ)还原速度增加;UO22+浓度和Fe3+浓度对Pu(Ⅳ)还原速度基本无影响。  相似文献   

14.
空心玻璃微球D2/Ne混合气体充气工艺   总被引:2,自引:2,他引:2  
本工作主要研究空心玻璃微球对D2和Ne气体渗透系数的差异,以及研究采用热扩散法在高压充气系统上向空心玻璃微球充入D2/Ne混合气体的充气工艺。利用干涉条纹法测量了在充气和保气时Ne的气体渗透系数,它们分别为KNe,350℃=2.6×10-18和KNe,25℃=8.0×10-22mol•m-1•s-1•Pa-1。根据D2的气体渗透系数确定了玻璃微球充D2/Ne混合气体的充气方法和充气平衡时间,平衡时间以充纯Ne时间为准。此外,还研究了空心玻璃微球充入混合气体后的保气性能。  相似文献   

15.
涂硼电离室中子探测效率和灵敏度   总被引:3,自引:2,他引:1  
从电离室工作原理导出了平板型涂硼中子电离室探测效率及灵敏度的计算公式,并求得其热中子探测效率和灵敏度。电离室对热中子探测效率饱和值为1.35%,灵敏度饱和值为9.65×10-14A•cm-2•s-1,与已有公式所得结果8.43×10-14A•cm-2•s-1相近。α粒子和Li离子对探测效率的贡献相差不大,但α粒子对灵敏度的贡献占主导地位。适当的硼膜厚度、慢化快中子、选用浓缩硼均有利于提高涂硼电离室探测效率和灵敏度。  相似文献   

16.
通过脉冲激光模拟单粒子效应,对光电耦合器4N49的单粒子瞬态脉冲(SET)效应进行了试验研究。在10V工作电压下,获取了4N49在特定线性能量传输(LET)值下的SET波形特征及其变化规律,得到了器件SET效应的等效LET阈值为10MeV•cm2•mg-1,而饱和截面数值则高达1.2×10-3cm2。试验验证了4N49的SET效应对后续数字电路的影响状况,定量研究了SET效应减缓电路的有效性,通过设计合理的电路参数可将器件在5V工作电压下的SET效应阈值由7.89MeV•cm2•mg-1提高至22.19MeV•cm2•mg-1。4N49的SET效应试验研究为光电耦合器SET效应的测试及防护措施的有效性验证提供了新的试验方法。  相似文献   

17.
本研究涉及应用Idogn法对神经生长因子(NGF)进行125I标记,并用同位素示踪法与电泳法相结合的方法研究125I- NGF在小鼠体内的血药浓度时间过程。结果显示,静脉注射 125I- NGF在小鼠体内的代谢规律符合二房室开放模型。分布相半衰期为0.13h,消除相半衰期为3.68h,125I-NGF在小鼠体内分布和消除均较快,清除率为0.125L•h-1•kg-1,表观分布容积为0.697L•kg-1,曲线所围面积为16.01μg•h•L-1。  相似文献   

18.
粉末冶金态铍在北京谱仪束流管中的应用   总被引:1,自引:1,他引:0  
根据北京谱仪(BESⅢ)束流管对材料物理性能的要求,对几种材料的物理性能进行比较后,选择粉末冶金态铍作为BESⅢ束流管的中心管材料。采用失重法对粉末冶金态铍在1号电火花加工油中的耐腐蚀性能进行研究,结果表明:粉末冶金态铍在1号电火花加工油中具有较好的耐蚀性,其腐蚀速率由初始的4.18×10-7kg•m-2•h-1逐渐变小,并稳定为1.54×10-7kg•m-2•h-1;在束流管10a的设计寿命内,粉末冶金态铍的最大腐蚀深度估算值为19.9μm,该值是BESⅢ束流管中心管最小厚度600μm的3.32%,满足BESⅢ的工程运行要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号