首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
成楷  钟飞  杨小俊  周宏娣 《包装工程》2023,44(23):156-163
目的 针对一种易碎异形小型固性物料的添加需求,开发一种物料转运料装置。方法 采用瞬态动力学仿真分析方法,运用ANSYS WorkBench软件对小型固性物料受到冲击碰撞进行瞬态动力学仿真分析,研究其可承受的最大转速。通过搭建平台进行实物转运料试验,验证该装置的可靠性和稳定性,得到为达到生产效益最大化的最优转速。结果 仿真结果表明该物料最大承受转速为1 200 r/min,否则物料失效。结论 根据转运物料试验表明该装置结构设计合理,可满足在高速连续状态下转运料的工作要求,且在600 r/min时物料完好数最多,生产效率最高。  相似文献   

2.
Experimental evidence shows that the presence of an ambient liquid can greatly modify the collision process between two solid surfaces. Interactions between the solid surfaces and the surrounding liquid result in energy dissipation at the particle level, which leads to solid-liquid mixture rheology deviating from dry granular flow behaviour. The present work investigates how the surrounding liquid modifies the impact and rebound of solid spheres. Existing collision models use elastohydrodynamic lubrication (EHL) theory to address the surface deformation under the developing lubrication pressure, thereby coupling the motion of the liquid and solid. With EHL theory, idealized smooth particles are made to rebound from a lubrication film. Modified EHL models, however, allow particles to rebound from mutual contacts of surface asperities, assuming negligible liquid effects. In this work, a new contact mechanism, 'mixed contact', is formulated, which considers the interplay between the asperities and the interstitial liquid as part of a hybrid rebound scheme. A recovery factor is further proposed to characterize the additional energy loss due to asperity-liquid interactions. The resulting collision model is evaluated through comparisons with experimental data, exhibiting a better performance than the existing models. In addition to the three non-dimensional numbers that result from the EHL analysis--the wet coefficient of restitution, the particle Stokes number and the elasticity parameter--a fourth parameter is introduced to correlate particle impact momentum to the EHL deformation impulse. This generalized collision model covers a wide range of impact conditions and could be employed in numerical codes to simulate the bulk motion of solid particles with non-negligible liquid effects.  相似文献   

3.
The coefficient of restitution (COR) is an important constant that represents the energy dissipation during contact between two objects. Simulation using the conventional discrete element method (DEM) involves a constant COR. This study presents a DEM simulation method that uses a parameter-dependent COR. The parameter-dependent COR was obtained from a collision incident between spherical particles and a plate surface using a drop-test apparatus. Glass and polypropylene beads of 3–6-mm diameter were used while acrylic and steel were used as the plate surfaces. The particle trajectories were captured by a high-speed camera and analyzed by an image analyzer. The COR was then correlated to a parameter-dependent COR function that depends on the material, impact velocity, and temperature. Free-fall DEM simulations using a constant COR and parameter-dependent COR were compared. The parameter-dependent COR approach obtained better agreement with experimental results than the constant-COR approach. The proposed concept could be applied for other material combinations with a wide range of operating conditions to obtain a database of parameter-dependent COR values for the simulation of solid handling applications.  相似文献   

4.
5.
This study is concerned with modeling of the loss of fine dust from storage piles and their dispersion in the atmosphere. The results of downwind particulate dispersion are tested by means of a two-dimensional wind tunnel model using tracer particles. The study shows that a wind barrier located two to three pile heights upstream will effectively reduce the wind blowing of fine particles from storage piles and the downwind particle density. The tracers used in the experiment are smoke, magnesia, latex, and glass particles. The particle sizes studied range from 15 μm to 75 μm. Experimental results indicate that the effects of particle settling due to gravity force will be negligible when the particle settling velocity is less than 0.03 m/s. If particle size is less than 15 μm, particles will most likely remain in a suspension state over a long distance. Finite difference techniques are used for steady state numerical simulation of particulate dispersion. The effects of the particle sizes, wind velocity, and the ground conditions on the downwind particle density distribution are presented.  相似文献   

6.
In this study, a truly incompressible smoothed particle hydrodynamics (SPH) algorithm combined with an effective surface tension model is extended to simulate the dynamic process of multiple droplets impacting on a liquid film in 2D and 3D. This approach uses a pressure Poisson equation to satisfy the incompressibility constraints, and the Navier–Stokes equations are solved in a Lagrangian form using a fractional-step projection method. The mathematical model is first validated by the simulations of several fluid impact phenomena in comparison with those obtained by other numerical methods. Then the interesting phenomena of two 2D droplets impacting successively on a rigid solid/liquid film are numerically predicted and compared with the corresponding experimental results. Next, the fluid mechanics of two 2D droplets impinging simultaneously on a thin liquid film are numerically investigated. The effects of the impact velocity and the two droplets’ horizontal spacing on the collision behavior are discussed in detail. Lastly, the splashing phenomenon of a 3D droplet impacting on a thin liquid film is simulated. All numerical results obtained are in agreement with the available data.  相似文献   

7.
8.
In wet granulation processes, a particle adhesion mediated by a liquid bridge is one of the quite important phenomena. In an actual process, the liquid bridge shows dynamic motion due to continuous motion of the particles. Therefore, understanding of the particle adhesion phenomenon by a dynamic liquid bridge is essential to adequately and precisely control wet granulation processes. This study presents a direct numerical simulation of the particle–particle adhesion by a dynamic liquid bridge. Collision of a dry particle and a wet particle was simulated at various collision angles. In particular, translational and rotational motions of the particle at different collision angles were discussed through comparison with a conventional static liquid bridge force model. As a result, it was found that both translational and rotational motions were largely different between simulation results of the direct numerical simulation and static liquid bridge force model, especially at the tangential collision. To understand these results, we focused on the rotational behavior of the particle and deformation of the liquid bridge. It was concluded that the non-slip behavior of the liquid bridge on the particle surface is a key phenomenon for the particle-particle adhesion by the dynamic liquid bridge at the tangential collision.  相似文献   

9.
On one hand, cyanided tailings are one kind of pollutants. On the other hand, they contain a lot of valuable elements. So utilization of them can bring social and environmental benefits. In this paper, cyanided tailings were used to prepare nano-iron oxide red pigment powders by an ammonia process with urea as precipitant. At first, cyanided tailings were oxidized by nitric acid. Then, the oxidizing mixture was separated into solid and liquid parts. The liquid mixture was reduced by scrap iron and the impurity of it was removed by use of NH3·H2O. Then, the seed crystal of γ-FeOOH was obtained, when the pure liquid reacted with ammonia liquid at the selected experimental conditions. At last, nano-iron oxide red pigment powders were prepared. The structure, morphology and size distribution of seed crystal and iron oxide red were characterized systematically by means of X-ray diffraction (XRD), transmission electron microscope (TEM) and laser particle size analyzer (LPSA). The results revealed that typical iron oxide nanoparticles were -Fe2O3 with particle size of 50–70 nm. Furthermore, the factors that affected the hue and quality of the seed crystal and iron oxide red pigment were also discussed.  相似文献   

10.
In impact ionization studies the target normally consists of a metal surface of compact solid density. In the present experiments, we investigate the use of a layer of a highly porous structure of nanometre-sized grains, sometimes also called “metal black”, as an alternative target. In our comparative experiments, spherical iron particles (0.1<dp<1.5 μm) were shot with velocities 2–30 km/s onto both a compact solid silver plate and a silver metal black layer of about 7 μm thickness (grain size 20–40 nm, mean density ≈1 g/cm3), deposited on a compact solid gold plate. Impact generated ions were analysed by means of time-of-flight mass spectrometry. The results reveal important advantages of the porous black layer, such as better mass resolution and a larger amount of ions from the impacting particle. Therefore metal blacks may be very suitable targets for the purposes of identification and characterisation of the impacting particle's composition. An attempt is made to give a physical explanation of the results in the frame of existing empirical ionization models. The study is part of a programme to improve devices for in-situ analysis of fast moving cosmic dust particles.  相似文献   

11.
In the gas–liquid–solid fluidized bed reactor (FBR) under super-condensed mode, the injection of liquid causes the particle agglomeration that leads to a complicated and unstable fluidization system. In this work, a probabilistic stability model is developed on the basis of a three-particle collision theory to describe such mode. The criterion of the model is achieved by analyzing the particle interaction, relative velocity distribution, and energy transfer in particle collision. The model error mainly originates from by the simplification of the actual system. The developed model is applicable to the case that a droplet completely spreads on the particle surface, that is, the solid–liquid contact angle is less than 40°. We then systematically verify the current model by comparison with the experimental data from the literature. The developed model provides an application prospect in reactor design and scale-up.  相似文献   

12.
In a direct coal liquefaction unit, pressure relief valves locate on the pipeline between the atmospheric and vacuum towers. Failures of the valve components occur frequently owing to the harsh operation conditions. A combined numerical-experiment investigation on the failures of valves is conducted in this paper. The variation of relative erosion rates of WC–Co coating with impact angles, the function of relative particle velocity, and the distribution of particle diameters are obtained from the high-temperature erosion experiments. Furthermore, the erosion mechanism of WC–Co coating under large impact angles is clarified. In the numerical simulation, the evaporation–condensation, particle motion, erosion, and the modified RNG k-ε turbulence models are used to analyze the phase transition and particle erosion in the valves. Results showed that: due to the high pressure drop and convergent–divergent structure of angle valve, the coal-oil slurry flashes as it enters into the valves. The evaporation of liquid oil produces a large amount of vapor oil, and results in a rapid increase in flow velocity. High concentration solid particles, driven by the high-speed stream, tend to erode the inner surface of valves. Severe erosion can be found in the spool of angle valve, downstream bushings at the angle valve and ball valve. The calculation results agree well with actual failure morphologies, verifies the accuracy of the present prediction method.  相似文献   

13.
《Advanced Powder Technology》2021,32(11):4235-4244
Liquid metal fragmentation by impinging fast water spray, so called water atomization, is widely used to produce metal powders efficiently. In the present paper, we conduct the high-speed visualization experiments and theoretical modeling for elucidating the mechanism of fragmentation and solidification processes, which are essentially important to control the metal powder characters. We successfully visualize the detailed sequential events from the water spray ejection, freely dropped molten metal of 42Sn-58Bi, followed by their collision, metal fragmentation in liquid phase, and solidification, leading to revealing the fragmentation processes as the impact of water spray and the vapor explosion. Quantified metal particle size convinces that the water atomization simultaneously proceeds fragmentation of metal in liquid phase with solidification. The experimental results of size distribution and mean diameter well validate the proposed physically-consistent theoretical modeling for the prediction of particle size.  相似文献   

14.
This study is concerned with the numerical simulation for the non-axisymmetric collision between a vortex ring and solid particles. The vortex ring convects with its self-induced velocity in a quiescent air, and the half part collides with spherical glass particles. The vortex method for gas-particle two-phase flow proposed by the authors in a prior paper is used for the simulation. The Reynolds number of the vortex ring is 2600, and the particle diameter is 50 μm. The Stokes number, defined as the ratio of the particle response time to the characteristic time of the vortex ring, is 0.74. The simulation clarifies that the particles induce the vortices, having an axis parallel to the convection direction of the vortex ring, inside the vortex ring and that pairs of the positive and negative vortex tubes appear. It also highlights that highly organized three-dimensional vortical structures composed of the streamwise vortices yield the rapid deformation and collapse of the vortex ring.  相似文献   

15.
Particle degradation can be a significant issue in particulate solids handling and processing, particularly in pneumatic conveying systems, in which high-speed impact is usually the main contributory factor leading to changes in particle size distribution (comparing the material to its virgin state). However, other factors may strongly influence particles breakage as well, such as particle concentrations, bend geometry, and hardness of pipe material. Because of such complex influences, it is often very difficult to predict particle degradation accurately and rapidly for industrial processes. In this article, a general method for evaluating particle degradation due to high-speed impacts is described, in which the breakage properties of particles are quantified using what are known as “breakage matrices.” Rather than a pilot-size test facility, a bench-scale degradation tester has been used. Some advantages of using the bench-scale tester are briefly explored. Experimental determination of adipic acid has been carried out for a range of impact velocities in four particle size categories. Subsequently, particle breakage matrices of adipic acid have been established for these impact velocities. The experimental results show that the “breakage matrices” of particles is an effective and easy method for evaluation of particle degradation due to high-speed impacts. The possibility of the “breakage matrices” approach being applied to a pneumatic conveying system is also explored by a simulation example.  相似文献   

16.
At certain conditions interaction between high velocity (up to 3 km/s) flows of microparticles with dimensions 20–70 μm and solid bodies could result in their super deep penetration (SDP) into those bodies. For SDP-effect to be studied a number of experiments were carried out. The X-ray analysis of microparticles acceleration has shown the advantage of acceleration of microparticles in mixture with the extender (porofor) because it makes it possible to regulate the flow density, its velocity and impact duration by means of the extender concentration variation. Experiments have been performed on the impact of microparticle flows with velocities in the range 1–2.6 km/s on copper and iron substrates. Results of metallographic investigations of cross-sectional and lengthwise grinds of substrates indicate that some tungsten particles penetrate into a target. The diameter of channels in the substrate material, which are formed due to particles penetration, is in the range 2–15 μm.  相似文献   

17.
This article presents a numerical study of indoor airflows and contaminant particle transportation in three ventilated rooms. The realizable k - ε model is employed to model the air-phase turbulence, while the Lagrangian particle tracking model is utilized for the particle-phase simulation. The predicted air-phase velocities and contaminant particle concentrations are validated against the experimental data obtained from the literature. In the first case, the realizable k - ε model successfully captures the flow trend and reasonably predicts the airflow velocity. The realizable k - ε model under-predicts the vertical air velocities along the vertical inlet jet axis by 11% at x = 0.219 m, which is slightly better than the standard k - ε model error of 17%. In a two-zone room case, the realizable k - ε model, combined with a Lagrangian particle tracking model, predicts the particle concentration decay with the highest normalized difference being 24%. In the third case, the influence of particle size, location of particle resource, and particle-wall collision on the particle concentrations is investigated by the realizable k - ε model and the Lagrangian model. It is found that for relatively small particles (diameter ≤ 10 μm), the particle concentration may be insensitive to the particle diameter. In addition it has been observed that the particle-collision model may have considerable effect on the particle concentration prediction.  相似文献   

18.
Zhang J  Bond AM 《Analytical chemistry》2003,75(11):2694-2702
The voltammetry of ferrocene (Fc) and Fc+ in the room-temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM x PF6) has been studied when solid is adhered to glassy carbon or platinum disk electrodes. Due to the slow dissolution kinetics and small diffusion coefficients in the viscous BMIM x PF6 ionic liquid, it is possible to obtain voltammograms of adhered Fc or Fc+ solid that are essentially indistinguishable (except for the current magnitude) from the reversible solution-phase Fc(0/+) process widely employed to provide a reference potential scale. However, the nature of the voltammetry obtained from the adhered solid is governed by the thickness (mass of the solid) of the particle layer. The mechanism proposed to explain the equivalence to solution-phase data involves dissolution at the particle/ionic liquid interface and is supported by electrochemical quartz microbalance measurements and a numerical simulation. Extensive studies on other redox-active solids suggest that voltammograms of solid particles adhered to the electrode surface in contact with ionic liquids frequently exhibit classical behavior associated with solution-phase diffusion-controlled voltammetry. Consequently, the method of adhering microparticles onto an electrode surface can frequently provide an efficient method of establishing ionic liquid solution-phase redox data using extremely small quantities of solid.  相似文献   

19.
The transparency of metal oxide containing polymeric composites was correlated to its filler transparency using a new method based on light microscopy analysis. Filler particles were pressed into filler tablets from which fragments were submerged in different refractive index liquids. Transparencies of different particulate materials with diameters from 0.007 to 1.5 μm were investigated. The transparencies depended on light absorption of the solid, filler particle size and refractive index mismatch of filler and liquid. A correlation between filler transparency and the transparency of filler containing polymers (composites) was established. The method allows to predict the composite transparency for any filler particle size and any filler particle/polymer refractive index mismatch. Manufacturing-caused, batch-wise quality differences in transparency of the same filler material showed similar transparency trends for filler/liquid and filler/polymer transparencies when no quantitative difference was found by nitrogen adsorption, XRD, DRUV–Vis, DRIFTS and SEM analysis.  相似文献   

20.
粒子冲击破岩技术是以高速金属粒子和高速流体破岩为主,以机械钻头破岩为辅的一种新型破岩工艺。针对锥直型加速流道,建立了粒子与流体在冲击破岩过程中速度与加速度的数学模型,分析了冲击过程中能量的吸收规律,提出了单个粒子速度、粒子体积与破岩体积间的函数关系,并基于LSTC-DYNAMIC仿真平台进行了验证分析。基于自主研制的粒子冲击破岩试验装置,开展了粒子直径从0.8 mm~1.4 mm的四种不同直径粒子射流冲击破岩实验,验证了理论模型并提出了粒子体积、冲击速度、流体流速与破岩体积间的匹配关系,为该技术的现场推广提供数据支撑和理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号