首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Non‐torque loads induced by the wind turbine rotor overhang weight and aerodynamic forces can greatly affect drivetrain loads and responses. If not addressed properly, these loads can result in a decrease in gearbox component life. This work uses analytical modeling, computational modeling and experimental approaches to evaluate two distinct drivetrain designs that minimize the effects of non‐torque loads on gearbox reliability: a modified three‐point suspension drivetrain studied by the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) and the Pure Torque® drivetrain developed by Alstom. In the original GRC drivetrain, the unequal planetary load distribution and sharing were present and they can lead to gear tooth pitting and reduce the lives of the planet bearings. The NREL GRC team modified the original design of its drivetrain by changing the rolling element bearings in the planetary gear stage. In this modified design, gearbox bearings in the planetary gear stage are anticipated to transmit non‐torque loads directly to the gearbox housing rather than the gears. Alstom's Pure Torque drivetrain has a hub support configuration that transmits non‐torque loads directly into the tower rather than through the gearbox as in other design approaches. An analytical model of Alstom's Pure Torque drivetrain provides insight into the relationships among turbine component weights, aerodynamic forces and the resulting drivetrain loads. In Alstom's Pure Torque drivetrain, main shaft bending loads are orders of magnitude lower than the rated torque and hardly affected by wind speed, gusts or turbine operations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
An analytical formulation was developed to estimate the load‐sharing and planetary loads of a three‐point suspension wind turbine drivetrain considering the effects of non‐torque loads, gravity and bearing clearance. A three‐dimensional dynamic drivetrain model that includes mesh stiffness variation, tooth modifications and gearbox housing flexibility was also established to investigate gear tooth load distribution and non‐linear tooth and bearing contact of the planetary gears. These models were validated with experimental data from the National Renewable Energy Laboratory's Gearbox Reliability Collaborative. Non‐torque loads and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox loads and disturb load sharing. Clearance in the carrier bearings reduces the bearing stiffness significantly. This increases the amount of pitching moment transmitted from the rotor to the gear meshes and disturbs the planetary load share, thereby resulting in edge loading. Edge loading increases the likelihood of tooth pitting and planet‐bearing fatigue, leading to reduced gearbox life. Additionally, at low‐input torque, the planet‐bearing loads are often less than the minimum recommended load and thus susceptible to skidding. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Aerodynamic and structural dynamic performance analysis of modern wind turbines are routinely estimated in the wind energy field using computational tools known as aeroelastic codes. Most aeroelastic codes use the blade element momentum (BEM) technique to model the rotor aerodynamics and a modal, multi‐body or the finite‐element approach to model the turbine structural dynamics. The present work describes the development of a novel aeroelastic code that combines a three‐dimensional viscous–inviscid interactive method, method for interactive rotor aerodynamic simulations (MIRAS), with the structural dynamics model used in the aeroelastic code FLEX5. The new code, called MIRAS‐FLEX, is an improvement on standard aeroelastic codes because it uses a more advanced aerodynamic model than BEM. With the new aeroelastic code, more physical aerodynamic predictions than BEM can be obtained as BEM uses empirical relations, such as tip loss corrections, to determine the flow around a rotor. Although more costly than BEM, a small cluster is sufficient to run MIRAS‐FLEX in a fast and easy way. MIRAS‐FLEX is compared against the widely used FLEX5 and FAST, as well as the participant codes from the Offshore Code Comparison Collaboration Project. Simulation tests consist of steady wind inflow conditions with different combinations of yaw error, wind shear, tower shadow and turbine‐elastic modeling. Turbulent inflow created by using a Mann box is also considered. MIRAS‐FLEX results, such as blade tip deflections and root‐bending moments, are generally in good agreement with the other codes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
This paper addresses the effect of gear geometrical errors in wind turbine planetary gearboxes with a floating sun gear. Numerical simulations and experiments are employed throughout the study. A National Renewable Energy Laboratory 750 kW gearbox is modelled in a multibody environment and verified using the experimental data obtained from a dynamometer test. The gear geometrical errors, which are both assembly dependent and assembly independent, are described, and planet‐pin misalignment and eccentricity are selected as the two most influential and key errors for case studies. Various load cases involving errors in the floating and non‐floating sun gear designs are simulated, and the planet‐bearing reactions, gear vibrations, gear mesh loads and bearing fatigue lives are compared. All tests and simulations are performed at the rated wind speed. For errorless gears, the non‐floating sun gear design performs better in terms of gear load variation, whereas the upwind planet bearing has more damage. In the floating sun gear scenario, the planet misalignment is neutralized by changing the sun motion pattern and the planet gear's elastic deformation. The effects of gear profile modifications are also evaluated, revealing that profile modifications such as crowning improve the effects of misalignment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
田德  陶立壮  胡玥  李贝 《太阳能学报》2022,43(5):260-269
为定量研究齿面磨损(TSW)的振动特性,提出一种基于齿廓修形和摩擦耦合的磨损故障建模方法,并引入最大磨损深度来表征齿面磨损程度。以大型风电机组齿轮箱高速输出轴直齿轮为研究对象,得到对应不同磨损程度下的齿轮时变啮合刚度,并将其代入到齿轮箱8自由度动力学微分方程,在不同转矩条件下对齿轮箱进行动力学仿真,得到不同磨损严重程度和转矩条件下的振动时频域特性。结果表明:仿真结果与实验数据吻合良好,验证了该方法的有效性;随着齿面磨损程度增加、转矩增大,齿轮箱振动、齿轮扭振剧烈;在0.4倍额定转矩附近,齿面磨损引起齿轮箱振动速度、振动加速度最为明显。研究结果可为齿轮磨损故障诊断提供理论指导。  相似文献   

6.
7.
This work develops an optimization algorithm for the definition of gear microgeometry modifications (MGM) on a gearbox belonging to an offshore 10-MW wind turbine. Subsequently, the impact of the gear microgeometry on the performance of gears and bearings is quantified: First, under rated load conditions and, second, accounting for the environmental conditions to estimate the long-term damage. To fulfil this task, a high-fidelity numerical model of the drivetrain is used, which meets the design requirements of the Technical University of Denmark (DTU) 10-MW reference offshore wind turbine. The optimization achieves a uniform distribution of the contact stress along the tooth flank, shifts its maximum value to the central position, and eliminates edge contact. These enhancements increase the gear safety factors. Nevertheless, the most significant improvement concerns planetary bearings, for which optimum gear MGM achieve a homogeneous share of the load among bearings. Moreover, deviations of the microgeometry with respect to the defined optimum are also addressed. In gears, lead slope deviations are counteracted by crowning modifications to restrain the increase of the load offset. Concerning planetary bearings, slope deviations can be beneficial or detrimental depending on whether they overload downwind or upwind planetary bearings, respectively. Finally, accumulated damage to planetary bearings after 20 years of service is assessed. Before MGM, results predict a premature failure of planetary bearings, while optimum MGM extend their predicted life above 20 years by achieving a reduction of the maximum accumulated fatigue damage by a factor of 4.4.  相似文献   

8.
In this paper, semi‐empirical engineering models for the three main wind turbine aerodynamic noise sources, namely, turbulent inflow, trailing edge and stall noise, are introduced. They are implemented into the in‐house aeroelastic code HAWC2 commonly used for wind turbine load calculations and design. The results of the combined aeroelastic and aeroacoustic model are compared with field noise measurements of a 500 kW wind turbine. Model and experimental data are in fairly good agreement in terms of noise levels and directivity. The combined model allows separating the various noise sources and highlights a number of mechanisms that are difficult to differentiate when only the overall noise from a wind turbine is measured. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
The dynamic loads on the rollers inside the bearings of large wind turbine gearboxes operating under transient conditions are presented with a focus on identifying conditions leading to slippage of rollers. The methodology was developed using a multi‐body model of the drivetrain coupled with aeroelastic simulations of the wind turbine system. A 5 MW reference wind turbine is considered for which a three‐stage planetary gearbox is designed on the basis of upscaling of an actual 750 kW gearbox unit. Multi‐body dynamic simulations are run using the ADAMS software using a detailed model of the gearbox planetary bearings to investigate transient loads inside the planet bearing. It was found that assembly and pre‐loading conditions have significant influence on the bearing's operation. Also, the load distribution in the gearbox bearings strongly depends on wind turbine operation. Wind turbine start‐up and shut‐down under normal conditions are shown to induce roller slippage, as characterized by loss of contacts and impacts between rollers and raceways. The roller impacts occur under reduced initial pre‐load on opposite sides of the load zone followed by stress variation, which can be one of the potential reasons leading to wear and premature bearing failures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
In the currently booming market of wind turbines, a clear focus is put on the design of reliable and cost-effective subsystems, such as the gearbox. A requirement for reliable gearbox design calculations is sufficient insight in the dynamics of the entire wind turbine drive train. Since traditional wind turbine design codes reduce the drive train to just a few degrees of freedom, considerable research effort is spent in advanced modelling and simulation techniques to gain more insights in the dynamics at hand. This work focusses on the gearbox modal behaviour assessment by means of three more complex modelling techniques of varying complexity: the purely torsional-, rigid six degree of freedom with discrete flexibility and flexible multibody technique. Both simulation and experimental results are discussed. Typical mode categories for traditional wind turbine gearboxes are defined. Moreover the challenge of the definition of an accurate approach to condense finite element models for representing the flexible components in the flexible multibody models is overcome. Furthermore the interaction between the structural modes of the planet carrier and planetary ring flexibility with the overall gearbox modes is investigated, resulting in the definition of two new mode categories: the planet carrier modes and planetary ring modes.  相似文献   

11.
Modern offshore wind turbines are susceptible to blade deformation because of their increased size and the recent trend of installing these turbines on floating platforms in deep sea. In this paper, an aeroelastic analysis tool for floating offshore wind turbines is presented by coupling a high‐fidelity computational fluid dynamics (CFD) solver with a general purpose multibody dynamics code, which is capable of modelling flexible bodies based on the nonlinear beam theory. With the tool developed, we demonstrated its applications to the NREL 5 MW offshore wind turbine with aeroelastic blades. The impacts of blade flexibility and platform‐induced surge motion on wind turbine aerodynamics and structural responses are studied and illustrated by the CFD results of the flow field, force, and wake structure. Results are compared with data obtained from the engineering tool FAST v8.  相似文献   

12.
Dynamic vibration response of a wind turbine structure is examined. Emphasis is put on the dynamic interaction between the foundation and the subsoil, since stiffness and energy dissipation of the substructure affect the dynamic response of the wind turbine. Based on a standard lumped‐parameter model fitted to the frequency response of the ground, a surface foundation is implemented into the aeroelastic code FLEX5. In case of a horizontal stratum overlaying a homogeneous half‐space and within the low frequency range, analyses show that a standard lumped‐parameter model provides an accurate prediction of the frequency‐dependent foundation stiffness. The generalized stiffness matrix of the substructure is found to be in a reasonable agreement with the corresponding values based on a Guyan reduction scheme. In addition, experimental findings based on traditional and operational modal techniques on a Vestas V112‐3.3 MW wind turbine installed on drained soil clearly indicate that the energy dissipation related to the lowest eigenmode is described accurately in the aeroelastic simulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Wind turbine controllers are commonly designed on the basis of low‐order linear models to capture the aeroelastic wind turbine response due to control actions and disturbances. This paper characterizes the aeroelastic wind turbine dynamics that influence the open‐loop frequency response from generator torque and collective pitch control actions of a modern non‐floating wind turbine based on a high‐order linear model. The model is a linearization of a geometrically non‐linear finite beam element model coupled with an unsteady blade element momentum model of aerodynamic forces including effects of shed vorticity and dynamic stall. The main findings are that the lowest collective flap modes have limited influence on the response from generator torque to generator speed, due to large aerodynamic damping. The transfer function from collective pitch to generator speed is affected by two non‐minimum phase zeros below the frequency of the first drivetrain mode. To correctly predict the non‐minimum phase zeros, it is essential to include lateral tower and blade flap degrees of freedom. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Planetary gearboxes play an important role in wind turbine (WT) drivetrains. WTs usually work under time-varying running conditions due to the volatile wind conditions. The planetary gearbox vibration signals in such an environment are hence highly nonstationary. Conventional spectral analysis and demodulation analysis methods are unable to identify the characteristic frequency of gear fault from such nonstationary signals. As such, this paper presents a time–frequency analysis methods to reveal the constituent frequency components of nonstationary signals and their time-varying features for WT planetary gearbox monitoring. More specifically, we exploit the adaptive optimal kernel (AOK) method for this challenging application because of its fine time–frequency resolution and cross-term free nature, as demonstrated by our simulation analysis. In this study, the AOK method has been applied to identify the time-varying characteristic frequencies of gear fault or to extract different levels of impulses induced by gear faults from lab WT experimental signals and in-situ WT signals under time-varying running conditions. We have demonstrated that the AOK is effective diagnosis of: (a) both the local damage (a single chipped tooth) and distributed faults (wear of all teeth), (b) both sun gear and planet gear faults, and (c) faults with very weak signature (e.g., the sun gear fault at the low speed stage of a WT planetary gearbox).  相似文献   

15.
A multi‐body aeroelastic design code based on the implementation of the combined aeroelastic beam element is extended to cover closed loop operation conditions of wind turbines. The equations of a controller for variable generator speed and pitch‐controlled operation in high wind speeds are combined with the aeroelastic equations of motion for the complete wind turbine, in order to provide a compound aeroservoelastic system of equations. The control equations comprise linear differential equations for the pitch and generator torque actuators, the control feedback elements (proportional–integral control) and the various filters acting on the feedback signals. In its non‐linear form, the dynamic equations are integrated in time to provide the reference state, while upon linearization of the system and transformation in the non‐rotating frame, the linear stability equations are derived. Stability results for a multi‐MW wind turbine show that the coupling of the controller dynamics with the aeroelastic dynamics of the machine is important and must be taken into account in view of defining the controller parameters. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
This article presents a general framework to set up the equations of motion for flexible multibody system using joint coordinates and Rayleigh‐Ritz approximation. The framework covers in particular the underlying formulation behind the aeroelastic code Flex developed by Øye. This formulation is strongly related to the one used in the module ElastoDyn of the code OpenFAST. The approach results in models with few degrees of freedom thanks to carefully selected shape functions and the direct account of the constraints. The specificities of the method for open‐loop systems and thin beams are presented. The inclusion of torsion and couplings with finite element methods or superelements are discussed. Simple validations cases are used. A four degrees of freedom model of a two‐bladed wind turbine is developed to illustrate the method.  相似文献   

17.
Conducting a further analysis on loading sharing among compound planetary gear system in wind turbine gearbox, and making a meshing error analysis on the eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of wind turbine gearbox respectively. In view of the floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of all gears, this paper establishes a refined mathematical model of two-stage power split loading sharing coefficient calculation in consideration of multiple errors. Also obtains the regular curves of the load sharing coefficient and floating orbits of center gears, and conducts a load sharing coefficient test experiment of compound planetary gear system to verify the research results, which can provide scientific theory evidence for proper tolerance distribution and control in design and process.  相似文献   

18.
Y. Xing  M. Karimirad  T. Moan 《风能》2014,17(4):565-587
This paper studies the drivetrain dynamics of a 750 kW spar‐type floating wind turbine (FWT). The drivetrain studied is a high‐speed generator, one‐stage planetary, two‐stage parallel and three‐point support type. The response analysis is carried out in two steps. First, global aero‐hydro‐elastic‐servo time‐domain analyses are performed using HAWC2. The main shaft loads, which include the axial forces, shear forces and bending moments, are obtained in this integrated wind–wave response analysis. These loads are then used as inputs for the multi‐body drivetrain time‐domain analyses in SIMPACK. The investigations are largely based on comparisons of the main shaft loads and internal drivetrain responses from 1 h simulations. The tooth contact forces, bearing loads and gear deflections are the internal drivetrain response variables studied. The comparisons are based on the mean values, standard deviations and maximum values extrapolated using a 10 ? 5 up‐crossing rate. Both operational and parked conditions are considered. The investigation consists of three parts. First, the responses are compared between the FWT and its equivalent land‐based version. Second, the contributions from the main shaft loads (shear forces, axial forces and bending moments) and nacelle motions are investigated individually. Third, an improved four‐point support (4PT) system is studied and compared against the original three‐point support system for the FWT. The results show that there are general increases in the standard deviations of the main shaft loads and internal drivetrain responses in the FWT. In addition, these increases are a result of the increased main shaft loads in the FWT, especially the non‐torque loads. Last, the 4PT system, when applied to a FWT drivetrain, significantly reduces the tooth contact forces and bearing loads in the low‐speed stage, but this result comes at the expense of increased main bearing radial loads. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the impact of extreme events on the planet bearings of a 5 MW gearbox. The system is simulated using an aeroelastic tool, where the turbine structure is modeled, and MATLAB/Simulink, where the drivetrain (gearbox and generator) are modeled using a lumped‐parameter approach. Three extreme events are assessed: low‐voltage ride through, emergency stop and normal stop. The analysis is focused on finding which event has the most negative impact on the bearing extreme radial loads. The two latter events are carried out following the guidelines of the International Electrotechnical Commission standard 61400‐1. The former is carried out by applying a voltage fault while simulating the wind turbine under normal turbulent wind conditions. The voltage faults are defined by following the guidelines from four different grid codes in order to assess the impact on the bearings. The results show that the grid code specifications have a dominant role in the maximum loads achieved by the bearings during a low‐voltage ride through. Moreover, the emergency brake shows the highest impact by increasing the bearing loads up to three times the rated value. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the impact that unbalanced voltage faults have on wind turbine structural loads. In such cases, electromagnetic torque oscillations occur at two times the supply voltage frequency. The objectives of this work are to quantify wind turbine structural loads induced by unbalanced voltage faults relative to those during normal operation; and to evaluate the potential for reducing structural loads with the control of the generator. The method applied is integrated dynamic analysis. Namely, dynamic analysis with models that consider the most important aeroelastic, electrical, and control dynamics in an integrated simulation environment based on an aeroelastic code (HAWC2) and software for control design (Matlab/Simulink). In the present analysis, 1 Hz equivalent loads are used to compare fatigue loads, whereas maximum–minimum values are used to compare extreme loads. A control concept based on resonant filters demonstrates reduction of the structural loads (shaft torsion and tower top side‐to‐side moment) induced by an unbalanced voltage fault.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号