首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrosion in the interior of pipelines is a major and costly problem encountered in the oil and gas industry. In this context, a fluoropolymer and a hybrid epoxy/fluoropolymer resin were studied for their potential use to prevent corrosion. The fluoropolymer coating required the use of a primer layer. The coatings were formulated to maintain the excellent abrasion and chemical resistance properties of fluoropolymers, while enhancing adhesion to the substrates. Standard corrosion experiments, including chemical immersion, adhesion, and salt fog tests, were used for preliminary evaluation. Coatings were characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy before and after exposure to corrosive environments. Electrochemical properties were studied with electrochemical impedance spectroscopy, by monitoring the resistance and capacitance of the coatings over time. The results obtained in this work will fill a knowledge gap and will aid in the selection of the proper composition and thickness of anticorrosion coatings for use in a highly corrosive media.  相似文献   

2.
Current accelerated testing of aircraft coating systems for corrosion protection relies heavily on salt spray methods. Electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and electrochemical noise methods (ENM) provide insight into the global properties of a coating system, and both techniques are being used on a limited basis. However, there is a need to investigate corrosion events with greater spatial resolution under coatings at the metal/coating interface. Such corrosion activity may be related to coating defects and variations in the surface chemistry of the underlying metal.

The scanning vibrating electrode technique (SVET) has been developed to allow high spatial resolution investigation of localized corrosion activity that may be associated with coating defects or galvanic coupled regions of the metal surface. The SVET offers high resolution in current measurements of the order of 0.5 μA/cm2 and is able to detect in-situ initiation and progress of corrosion activity under a protective coating. Using the SVET, minute variations in d.c. current associated with localized corrosion activity are detected and used to map both anodic and cathodic corrosion activities in a localized area. The difference in initial corrosion activity under various coatings can be correlated to the performance life of the coatings. The application of SVET to aircraft coatings and corrosion is reported to demonstrate the utility of this important new electrochemical tool.

In the current study, the SVET was used to discriminate the corrosion protection performance of selected sol–gel based coating systems. Sol–gel based surface treatments are being developed as part of an environmentally compliant coating system alternative to the currently used chromate-based systems. The SVET results are compared with data obtained from chromium inhibition coating systems. The SVET analyses are compared with electrochemical impedance measurements. The comparison of such data will provide the basis to adopt SVET measurements as an early performance discriminator for newly developed coating systems.  相似文献   


3.
For corrosion protective coatings that are designed to give lifetimes of protection that may extend to 50 years, valid accelerated test methods are necessary to develop improved systems and validate performance. Fluid flow over metals has long been believed to influence the corrosion process. Studies have been focused on the effects of flow rate on the corrosion of bare metals. The influence of fluid flow on the degradation of metal-protective coatings has received less attention. This paper describes a preliminary study on the influence of laminar flow on organic coatings. A Hele-Shaw cell and its associated fluid control apparatuses are incorporated into the electrochemical cell setup. The barrier properties of the coating as a function of immersion time and flow rate have been monitored by electrochemical impedance spectroscopy. We observe that the barrier properties of the coating measured electrochemically decrease exponentially with the increasing flow rate. We propose that the flowing electrolyte solution could be used in acceleration tests for the lifetime prediction of organic coatings as the acceleration of failure we have observed does not appear to change the mechanism of failure. Further analysis is proposed to validate immersion flow rate as a universal accelerating parameter for coating failure.  相似文献   

4.
EIS and ENM measurements for three different organic coatings on aluminum   总被引:6,自引:0,他引:6  
Electrochemical impedance spectroscopy (EIS) and Electrochemical noise measurements (ENM) were used to evaluate protective properties of three different organic coating systems. The coatings under investigation were two-component aerospace coatings, applied on aluminum substrate. They were immersed in a 0.5 mol l−1 sodium chloride (NaCl) solution, within a controlled flow cell and were tested for 1 year.

The impedance modulus in the low frequency domain and the noise resistance were calculated and compared. From EIS data, coating capacitances and coating resistances of coating performance were estimated. The electrochemical results are in good agreement with final visual observations. The results of this study yield a performance ranking of the three different coatings.  相似文献   


5.
采用电化学阻抗谱分析了环氧涂层的介质浸泡、ASTM-B117盐雾试验、PROHESION循环试验的性能变化。实验结果表明:介质浸泡更侧重考察涂层的屏蔽作用,对环氧-聚酰胺体系酸性电解质更容易导致涂层失效;而盐雾试验更容易导致涂层吸收水分,干湿交替增加了有机涂层吸水能力;划痕试验表明样板在ASTM-B117和PRO-HESION遵循不同的腐蚀机理。  相似文献   

6.
海水压力对深海用环氧涂层防护性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
高瑾  钱海燕  孙晓华  郭为民  李晓刚 《化工学报》2015,66(11):4572-4577
采用电化学阻抗谱(EIS)技术与局部交流阻抗技术(LEIS)研究了深海环境用重防腐环氧涂层H44-61在深海模拟环境(青岛海水,常压以及6 MPa交变压力)下的腐蚀电化学行为,探讨了交变压力对深海用涂层防护性能的影响。结果表明,涂层在6 MPa交变压力下的涂层电容较常压下高且涂层电阻较低,涂层的防护性能下降,但低频阻抗膜值均在107 Ω·cm2以上,说明涂层仍有较好的防护性能;LEIS的研究表明交变压力下人造缺陷区域的阻抗值较小,缺陷周围涂层的剥离面积较大,说明压力交变能加快电解质溶液向涂层金属界面扩散,加速涂层下金属的腐蚀过程,降低涂层的防护性能。  相似文献   

7.
Strict regulations concerning the content of volatile organic compounds (VOCs) and heavy metals (Cr6+) in aircraft coating systems have increased the economic burden of the United States Air Force (USAF) in the area of coating maintenance. To this end, it is critical to have methods to characterize new coating systems in such a manner that the data can be used to predict accurately and reliably the expected lifetime of the coatings in service. Electrochemical noise method (ENM) and electrochemical impedance spectroscopy (EIS) are two techniques used to monitor extent and rate of corrosion. The USAF is currently employing these methods in order to supplement data acquired from traditional salt-spray methods. ENM and EIS are used to evaluate each component of the coating system and its contribution to corrosion prevention. Preliminary evaluations of an aircraft coating system on aluminum substrate (Al 2024-T3) produces resistance noise values of 106 to 107 Ω/cm2. It is hoped that these results will form the basis of coatings that give increased USAF fleet service life and reduction in maintenance manpower and materials costs.  相似文献   

8.
Electrochemical characterisation of multilayer organic coatings   总被引:2,自引:0,他引:2  
The protective properties of eight high performance commercial multilayer organic coatings for aeronautical use (based on polyurethane, epoxy and polyurethane-compatible epoxy resins) on anodised 2024-T3 Al alloy were evaluated in neutral aerated 3.5% NaCl aqueous solution using the electrochemical impedance spectroscopy (EIS) technique. The investigation was performed on specimens supplied and prepared from Alenia in accordance with their technical specifications. Results obtained in this paper show that all coating systems exhibit excellent protective properties even after prolonged immersion in the test solution (one year). Although the dielectric properties of all multilayer coatings are quite similar, EIS was proved to be able to discriminate among them, making possible a rank of these protective systems to prevent or to reduce corrosion. Capacitance measurements performed on the same coatings allow their behaviour to be forecasted.  相似文献   

9.
Silicon nitride was firstly used as anticorrosive pigment in organic coatings. An effective strategy by combining inorganic fillers and organosilanes was used to enhance the dispersibility of silicon nitride in epoxy resin. The formed nanocomposites were applied to protect Q235 carbon steel from corrosion. The anticorrosive performance of modified silicon nitride with silane (KH-570) was investigated by electrochemical impedance spectroscopy (EIS), water absorption and pull-off adhesion methods. With the increase of immersion time, the corrosion resistance as well as adhesion strength of epoxy resin coating and unmodified silicon nitride coating decreased significantly. However, for the modified silicon nitride coating, the corrosion resistance and adhesion strength still maintained 5.7×1010 Ω cm2 and 7.6 MPa after 2400-h and 1200-h immersion, respectively. The excellent corrosion resistance performance could be attributed to the chemical interactions between KH-570 functional groups and silicon nitride powders, which mainly came from the easy formation of Si-O-Si bonds. Furthermore, the modified silicon nitride coating formed a strong barrier to corrosive electrolyte due to the hydrophobic of modified silicon nitride powder and increased bonds.  相似文献   

10.
Our laboratory recently began work on the use of room temperature ionic liquids ((RTIL's) to enhance our capabilities for the electrochemical characterization of organic coatings [A.M. Simões, D. Tallman, G.P. Bierwagen, The use of ionic liquids for the electrochemical characterization of water transport in organic coatings, Electrochem. Solid-State Lett. 8 (2005) 60]. The RTIL's are electrically conductive liquids consisting of large molecules that can be used to investigate the electrochemical properties of coatings in a non-aqueous medium. The enhancement of coating characterization comes from the fact that RTIL's have sufficient conductivity to be an immersion medium for electrochemical measurements, but they do not directly penetrate and effect organic coatings as do aqueous electrolyte solutions. This allows the separate examination of the effects of water on coatings in immersion or cyclic exposure. Indeed, our initial studies showed that a hydrophilic RTIL could be used to electrochemically characterize the drying of a coating after immersion, a process which heretofore had not been followed electrochemically. Thus, electrochemical measurements of coatings based on aqueous electrolyte immersion can be enhanced by the use of RTIL's and the effects of water on the coatings under study isolated and analyzed separately, especially the diffusion of water out of coatings during drying processes. Recent papers from our group have introduced the methodology whereby RTIL's in conjunction with capacitance monitoring via electrochemical impedance spectroscopy (EIS) can be used to determine the diffusion coefficient of water out of a non-pigmented, additive free coating [A.M. Simões, D. Tallman, G.P. Bierwagen, The use of ionic liquids for the electrochemical characterization of water transport in organic coatings, Electrochem. Solid-State Lett. 8 (2005) 60; K. Allahar, B. Hinderliter, A. Simoes, D. Tallman, G. Bierwagen, S. Croll, Simulation of wet–dry cycling of organic coatings using ionic liquids, J. Electrochem. Soc. 154 (2007) 177–185; B. Hinderliter, K. Allahar, O. Stafford, S. Croll, Using Ionic Liquids to Measure Coating Properties via Electrochemical Impedance Spectroscopy, Presented the 2006 International Coatings Exposition, Federation of Societies for Coatings Technology, New Orleans, LA, 2006 Oct.; B.R. Hinderliter, K.N. Allahar, G.P. Bierwagen, D.E. Tallman, S.G. Croll, Thermal cycling of epoxy coatings using room temperature ionic liquids, J. Electrochem. Soc. 155 (3) (2008) 1]. The technique has been extended to several types of coatings as well as the study of the cyclic wetting and drying of coatings [K. Allahar, B. Hinderliter, A. Simoes, D. Tallman, G. Bierwagen, S. Croll, Simulation of wet–dry cycling of organic coatings using ionic liquids, J. Electrochem. Soc. 154 (2007) 177–185]. This latter set of processes is one of the key set of events in exterior exposure that causes the failure of exterior protective coatings. Recently, RTIL's have been used to simulate the alternate wetting and drying of a Zn-rich epoxy coating system. EIS experiments were conducted on the Zn-rich epoxy under constant immersion in 0.05 M NaCl and RTIL. The experimental results were analyzed to determine the dielectric response and changes due to Zn oxidation within the Zn-rich system.  相似文献   

11.
合成了一种新型的改性脂肪胺固化剂,并以此制备了定向钻穿管道用无溶剂防腐涂料。该固化剂赋予涂层优良的耐腐蚀性,可满足定向钻穿管道外防腐层的性能要求。采用电化学交流阻抗对该涂层的耐腐蚀性进行了评价,并测试了其耐盐雾性。  相似文献   

12.
High performance polyaniline containing coating system for wet surfaces   总被引:1,自引:0,他引:1  
Application of paint coatings on wet surfaces is rather difficult due to poor adhesion of coatings. For painting of wet surfaces, moisture curable coating systems based on epoxy resin and ketimine are found to be useful. Hence a study has been made on the corrosion protection ability of coating on wet surfaces using epoxy resin, ketimine and polyaniline. Paints with 20–30% PVC were prepared and applied over the wet steel surface and the corrosion protection performance of the coating was found out by salt spray and electrochemical impedance spectroscopic techniques. Coating with 20% PVC is found to offer very high protection since the impedance values are remained at greater than 109 Ω cm2 after immersion and salt spray tests.  相似文献   

13.
Organic coatings are prone to failure due to diffusion of the corrosion media toward the metal surface through the microcracks caused by internal and environmental stresses especially in immersion environment. In order to extend the service lifetime of organic coatings, we developed a self-curing epoxy resin/perfluorooctyl triethoxysilane (POTS)-loaded mesoporous silica nanoparticles (MSNs) nanocomposite (SEP/POTS-MSNs) coating, by embedding the POTS-loaded MSNs (POTS-MSNs) into an SEP resin. Fourier transform infrared, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller analyses were conducted to confirm the successful loading of POTS in the MSNs. Thermogravimetric analysis was used to characterize the loading amount of POTS. The corrosion protection properties of the SEP, SEP/MSNs, and SEP/POTS-MSNs coatings were evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests. The results indicate that the SEP/POTS-MSNs coating with only 30 μm thickness showed corrosion resistance with Z f = 0.01 Hz of 4.7 × 108 Ω/cm2 and icorr of 0.026 nA/cm2 after 58 hr of immersion in boiling water, which were both two orders of magnitude higher than those of the SEP coating. The SEP/POTS-MSNs coating combines the advantages of the SEP coating and the POTS-MSNs. We anticipate that the SEP/POTS-MSNs coating has promising potential for use in immersion environments.  相似文献   

14.
The protective performance of solvent-borne epoxy/polyamide coatings formulated with zinc phosphate anticorrosion pigment was improved through the addition of 2-mercaptobenzimidazole as an organic corrosion inhibitor. In addition to determining the optimum percentage of mercaptobenzimidazole, the electrochemical impedance spectroscopy data could show the influence of inhibitor concentration on the epoxy behavior within 35 days of immersion in 3.5 wt% NaCl solution. The improved corrosion protection and adhesion strength in the presence of the pigment and inhibitor were connected to the deposition of a protective layer at the coating/substrate interface which might limit active zones for electrochemical reactions. The precipitation was confirmed using electrochemical impedance spectroscopy, polarization curves and SEM/EDX surface analysis.  相似文献   

15.
The use of polypropylene in pipeline coatings   总被引:2,自引:0,他引:2  
Despite the fact that the pipeline coating represents only about 5% of the total cost, the choice of the most effective coating is a key point to guarantee the life of the installed pipelines. Since the eighties, polypropylene copolymer coatings have been used for the protection of the external surface of on-shore and off shore pipelines. Polypropylene is one of the most suitable coatings when high mechanical properties (impact resistance, penetration resistance, etc.) and/or heat resistance are required. Polypropylene has also been used in ordinary pipelines giving advantages compared with the standard coatings, e.g. fusion bonded epoxy resin, coal tar enamel and polyethylene. New applications for polypropylene copolymers such as pipeline coatings have recently been developed, these include an insulating coating obtained with foamed polypropylene and an internal coating obtained by spraying a polypropylene adhesive powder.  相似文献   

16.
为减少团聚,提高石墨烯在涂层中的分散性,研究采用纳米分散技术预先制备了石墨烯分散液,再将其分散至环氧树脂中获得石墨烯改性复合涂层。通过对石墨烯含量为 0、0.3%、0.6%的复合涂层进行盐水浸泡、盐雾、阴极剥离实验及电化学性能测试,证明石墨烯的加入显著增强了涂层的防护性能。石墨烯复合涂层在 3.5%盐水中浸泡 1 008 h后,涂层低频阻抗仍大于 106 Ω·cm2比未添加石墨烯的涂层提高了 3个数量级,且盐雾实验 6 000 h后涂层表面仍保持完好;含 0.6%石墨烯,的涂层耐蚀行为劣于石墨烯含量为 0.3%的涂层。  相似文献   

17.
采用电化学阻抗谱(EIS)研究了不同孔径环氧导静电涂层的电化学特性,获得了储油罐内防护涂层逐渐遭受破坏的电化学阻抗变化规律.结果表明,EIS谱图中10mHz频率处103~104 Ω的总阻抗值是判定环氧导静电涂层防护性能失效的依据.  相似文献   

18.
The water sorption of thin defect free epoxy films and coatings on aluminium electrodes was studied using the gravimetric method and electrochemical impedance spectroscopy. The results show that the double layer capacitance of the wetted surface of the aluminium electrode under the epoxy film is considerably smaller than that of a bare aluminium electrode, except in the early period of immersion. The resistivity of the solution absorbed in the epoxy coating is much higher than that of the bulk solution. A method for approximately determining the equilibrium water sorption of the epoxy coatings on the metal surface from the double layer capacitance is reported.  相似文献   

19.
研究了添加不同颜基比(P/B)纳米Ag.SiO2对环氧树脂涂层在金黄色葡萄球菌环境中防腐性能的影响。利用原子力显微镜(AFM)观察了涂层在金黄色葡萄球菌溶液中浸泡前的表面形貌,测试了涂层浸泡前后的交流阻抗谱(EIS)。结果表明:添加纳米Ag.SiO2由于增加了涂层多孔性而导致其阻抗不同程度下降,P/B为0.3%时涂层的阻抗降至106Ω.cm2以下,基本失去了保护作用;在金黄色葡萄球菌溶液浸泡过程中纳米Ag.SiO2的杀菌作用开始显现,浸泡后未添加纳米Ag.SiO2涂层的耐蚀性能直线下降,而P/B为0.1%时涂层的耐蚀性能基本保持不变。  相似文献   

20.
Inorganic/organic hybrid conversion surface coatings for long-term protection of aluminum alloys against atmospheric corrosion have been developed based on a unique self-assembled nanophase particle (SNAP) coating process. Nano-particles with peripheral epoxy functional groups are pre-formed in an aqueous sol–gel process and then assembled and crosslinked upon application on the substrate surface. Mono-, di-, and tri-functional amino-silanes have been used as crosslinking agents. Corrosion resistance properties of these hybrid nanocomposite coatings studied by a variety of electrochemical testing methods including electrochemical impedance spectroscopy, scanning vibrating electrode technique, and potentiodynamic scan method, indicate excellent barrier protection performance of the coatings. For comparison, coatings crosslinked with amino-silanes offer significant improvement in coating performance over the previously described SNAP formulations with a conventional amine crosslinker—diethylenetriamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号