首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper describes an automatic welding control system developed for alternating current shielded metal arc welding (SMAW). This method could replace manual operations which require a well-trained technician. We have derived a mathematical model of the welding control system and identified the system’s parameters. The sliding surface is used as the input variable to reduce the number of fuzzy reasoning rules, in comparison with the conventional two-dimensional fuzzy logic control (FLC) algorithm. An adaptive fuzzy sliding mode controller (AFSMC) consists of an equivalent control part and a hitting control part. An adaptive law derived from a Lyapunov function is used to obtain the FLC’s parameters, and is applied to approximate the equivalent control part of the sliding mode control (SMC), so that the system states can be forced to zero. By using three-rules FLC, the control part that satisfies the hitting conditions of the SMC can force the system’s states to reach and remain on the sliding surface. Therefore, the stability of the AFSMC can be guaranteed and can be used to modulate the rate of the electrode feeding mechanism that regulates the arc current of the SMAW. The simulation and the experimental results both show that this automatic welding control system, based on the AFSMC, can perform effectively.  相似文献   

2.
A robotic aircraft flexible tooling system is proposed in this paper, of which high-precision synchronous motion control of dual robots is a key part. In order to alleviate the effects of the mechanical coupling over synchronous and tracking errors of the two robots, a cross-coupling scheme based on an adaptive fuzzy sliding mode controller (AFSMC) is developed. First, the mechanical coupling model is established by dynamics analysis of the dual-robot driving system. Then, a novel cross-coupling error is proposed, which combines both the position and speed tracking and synchronous errors of dual robots. Moreover, the cross-coupling control scheme based on AFSMC is presented. For the proposed AFSMC, a fuzzy logic controller is adopted to generate the hitting control signal, and the output gain of the sliding mode control is tuned online by a supervisory fuzzy system. Finally, the preferable performance of the proposed AFSMC cross-coupling approach is verified by the simulation results compared with the conventional proportional-integral-derivative control and SMC cross-coupling controls.  相似文献   

3.
The Electric power steering (EPS) system, a typical non-linear system, is easy to be influenced by parameters perturbation and disturbance of the road. Traditional linear control method based on a simplified linear model such as PID control cannot reach good dynamic performance. To reduce the influence of parameters perturbation and disturbance of the road and enhance the robustness of the system, an Adaptive fuzzy sliding mode control (AFSMC) method is proposed in this paper. First, fuzzy sliding mode control is employed to enhance the dynamic performance of the system. Then, to improve the precision of the controller, genetic algorithm is used to optimize the control rules which are essential to fuzzy control. The experimental results on non-linear EPS model demonstrate that AFSMC is more stable than Sliding mode control (SMC) method and more efficient to the non-linear system than SFPID control method. They can also prove that AFSMC can provide a stable driving in the presence of parameters perturbation and disturbance of the road.  相似文献   

4.
A new method to tune the gains of the proportional integral derivative (PID) controller for alternating current shield metal arc welding (SMAW) of automatic arc welding system using a SMAW process is presented in this paper. This method used the genetic algorithm (GA) approach to optimize the gains of the PID auto-tuner and considerably modulated the rate of an electrode feed mechanism that regulates arc current. The proposed controller was verified by simulation and experiments of the transient response in the automatic arc welding system. Finally, the performance indices of the proposed controller are compared with that based on Ziegler–Nichols tuning rules.  相似文献   

5.
In this paper, a robust controller for a three degree of freedom (3 DOF) helicopter control is proposed in presence of actuator and sensor faults. For this purpose, Interval type-2 fuzzy logic control approach (IT2FLC) and sliding mode control (SMC) technique are used to design a controller, named active fault tolerant interval type-2 Fuzzy Sliding mode controller (AFTIT2FSMC) based on non-linear adaptive observer to estimate and detect the system faults for each subsystem of the 3-DOF helicopter.The proposed control scheme allows avoiding difficult modeling, attenuating the chattering effect of the SMC, reducing the rules number of the fuzzy controller.Exponential stability of the closed loop is guaranteed by using the Lyapunov method. The simulation results show that the AFTIT2FSMC can greatly alleviate the chattering effect, providing good tracking performance, even in presence of actuator and sensor faults.  相似文献   

6.
The boundary layer approach is the most popular method to reduce the chattering phenomenon in sliding mode control (SMC) for uncertain nonlinear systems. This paper applies the fuzzy sliding mode structure based on the boundary layer theory which is used as speed controller of an indirect field-oriented control (IFOC) of an induction motor (IM) drive. A fuzzy inference system is assigned for reaching the controller part of the fuzzy sliding mode controller (FSMC) to eliminate the chattering phenomenon in spite of the small and large uncertainties in the system. The applied fuzzy system acts like a saturation function technique in a thin boundary layer near the sliding surface so that the stability of the system is guaranteed. Also, the equivalent control part is estimated to avoid the computational burden by an averaging filter. On the other hand, the averaging filter assists to improve the tracking performance despite the possibility of large uncertainties in the system so that the stability of the system is guaranteed. The main advantages of the proposed chattering-free speed controller are robustness to parameter variations and external load disturbance. The simulation results are shown to verify the effectiveness of the proposed speed controller, and its advantages are shown in comparison with the FSMC system and the conventional SMC.  相似文献   

7.
This paper presents an automatic welding control system for the alternating current shield metal arc welding process. A nominal nonlinear mathematical model containing uncertainties such as dead-zone, welding control system saturation, and the identified system parameters is derived. A novel variable structure model reference control scheme is designed to modulate the rate of the electrode feed mechanism, thereby regulating the arc current. The developed controller assures the global reaching condition of the sliding mode of the controlled welding system. In the sliding mode, the electric current error between the plant and the model asymptotically approaches zero. Moreover, the welding system remains insensitive to uncertainties and disturbance as the systems with friction. The simulation and experimental results confirm that the automatic welding control system, based on the proposed model-following variable structure controller, successfully maintains the magnitude of the arc current at the desired value and preserves the stability of the arc length, thereby ensuring excellent welding performance.  相似文献   

8.
0 INTRODUCTION(The satisfied control of the overall weld process is not easily accomplished, largely due to the inadequacies of the available process models. Without exceptions, most welding control methods are based upon the analytical welding models. Although these models are derived directly from the physical laws that govern the main features of the weld pool, a number of assumptions are made to obtain the mathematical solutions and some variables are ignored due to the complexity of t…  相似文献   

9.
介绍了一种在波形控制基础上,采用电弧自身传感的协同式模糊 控制方法对焊接过程参数进行实时控制的逆变式CO2焊机控制系统。它通过电弧自身传感 对CO2焊接过程有重要影响的短路过渡频率的检测,通过模糊处理和模糊判决之后,实时 的对电弧电压进行控制,以保持焊接过程中规范参数的协同匹配关系。试验结果表明,采用 该控制系统的焊机,实现了焊接规范参数的自动匹配和自动调节,同时明显改善了焊缝成形 和降低了焊接过程中的飞溅。  相似文献   

10.
This study proposes an adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. A transformation with respect to tracking error using certain performance functions is used to ensure the transient and steady-state performances of the trajectory tracking control for robotic manipulators. Using the transformed error, a nonsingular terminal sliding mode surface is proposed. A continuous terminal sliding mode control (SMC) is presented to stabilize the system. To compensate for the uncertainty and external disturbance, a novel sliding mode disturbance observer is proposed. Considering the unknown boundary of the derivative of a lumped disturbance, an adaptive law based on the idea of equivalent control is designed. Combining the adaptive law, continuous nonsingular terminal SMC, and sliding mode disturbance observer, the adaptive sliding mode disturbance rejection control with prescribed performance is developed. Simulations are carried out to demonstrate the effectiveness of the proposed approach.  相似文献   

11.
为实现挖掘机器人的自动挖掘,在挖掘机器人的轨迹规划器给出铲斗期望运动轨迹的情况下,需要挖掘机器人的控制系统能够控制其工作装置实现对给定轨迹的准确跟踪.利用拉格朗日方法建立了挖掘机器人工作装置的三自由度动力学方程,设计了自适应模糊滑模变结构控制器.利用模糊控制动态调节切换增益,将滑模控制的切换项转化为连续的模糊系统,增强了控制系统对挖掘机器人工作装置不确定性和外界干扰的鲁棒性,削弱了滑模控制的抖振现象,并且有较强的自适应跟踪能力.利用MATLAB7.4/Simulink工具箱对所设计的控制器进行了仿真,给出了自适应模糊滑模控制的跟踪性能及误差.  相似文献   

12.
为克服3-UPS/PU并联机构关节摩擦力突变现象带来的跟踪畸变问题,设计了一种模糊自适应滑模控制方法。首先在机构动平台工作空间内建立该机构的整体动力学模型。针对切换型滑模控制驱动力抖振以及自适应滑模控制(ASMC)对摩擦突变较敏感的不足,提出一种模糊自适应滑模控制(FASMC)方法,该方法以自适应理论为基础,可以在线估计包括摩擦在内的系统模型不确定项,自适应增益通过模糊逻辑系统实现了动态调整,相比ASMC可以更准确地逼近摩擦的变化情况,从而更有效地抑制摩擦力突变影响,增强了系统鲁棒性。由于无需依赖具体的摩擦模型以及简单的控制结构,FASMC适用于并联机构这类复杂不确定系统。仿真结果显示,所采取的控制方法能有效估计并克服机构摩擦干扰,提高了机构的控制精度,而且驱动力没有出现抖振现象。  相似文献   

13.
This paper presents the characteristics of a general structured observer and presents an estimation algorithm for a system with external disturbances which are added to the input of the system. By using a disturbance model, the general structured observer can estimate the states of the system in spite of disturbances, where the system is affected from external disturbances. Also, the general structured observer can include the function of a PI observer or high gain observer by properly adjusting the observer’s gain matrices. The existence condition for the observer is derived, which can be checked by the system’s observability condition and the pole-zero cancellation of the system’s polynomial matrix. Through a numerical example, it is verified that the proposed observer is effective estimating the states of the system and the input disturbance.  相似文献   

14.
15.
The passivity-based sliding mode control (SMC) problem for a class of uncertain neutral systems with unmeasured states is investigated. Firstly, a particular non-fragile state observer is designed to generate the estimations of the system states, based upon which a novel integral-type sliding surface function is established for the control process. Secondly, a new sufficient condition for robust asymptotic stability and passivity of the resultant sliding mode dynamics (SMDs) is obtained in terms of linear matrix inequalities (LMIs). Thirdly, the finite-time reachability of the predesigned sliding surface is ensured by resorting to a novel adaptive SMC law. Finally, the validity and superiority of the scheme are justified via several examples.  相似文献   

16.
It is well known that surface alloying quality may vary significantly with respect to process parameter variation. Thus a feedback control system is required to monitor the operating parameters for yielding a good quality control. Since this multi-input and multi-output (MIMO) system has nonlinear coupling and time-varying dynamic characteristics, it is very difficult to establish an accurate process model for designing a model-based controller. Hence an adaptive fuzzy sliding-mode controller (AFSMC) which combines an adaptive rule with fuzzy and sliding-mode control is employed in this study. It has an on-line learning ability for responding to a system’s nonlinear and time-varying behaviours. Two adaptive fuzzy sliding-mode controllers are designed for tuning the laser power and the traverse velocity simultaneously to tackle the absorptivitiy and geometrical variations of the work pieces. The simulation results show that good surface lapping performance is achieved by using this intelligent control strategy.  相似文献   

17.
直接型模糊自适应滑模控制在智能减振结构中的应用   总被引:2,自引:0,他引:2  
在智能减振结构中,需要控制器有很好的鲁棒性,以保证在结构参数发生变化的情况下仍可以获得理想的控制结果。简单模糊逻辑控制在系统结构参数变化比较大的情况下,其鲁棒性能比较差。引入滑模控制的思想,把基本控制量分为等效控制量和开关控制量,并同时用两个模糊逻辑进行近似逼近,自适应率的设计保证了系统的稳定性,从而建立了直接型模糊自适应滑模控制。通过和简单模糊控制的控制结果比较,验证了直接型模糊自适应滑模控制在智能减振系统中的有效性。  相似文献   

18.
A significant portion of the total manufacturing time for a pipe fabrication process is spent on the welding following the primary machining and fit-up processes. To achieve a reliable weld bead appearance, automatic seam tracking and adaptive control to fill the groove are urgently required. For seam tracking in the welding processes, vision sensors have been successfully applied. However, the adaptive filling control for a multitorch system for the appropriate welded area has not yet been implemented in the area of submerged arc welding (SAW). This paper describes several advances in sensor and process control techniques for applications in SAW which combine to give a fully automatic system capable of controlling and adapting the overall welding process. This technology has been used in longitudinal and spiral pipe mills and in pressure vessel production.  相似文献   

19.
针对采煤机自动调高和采煤工作面无人化存在的问题,提出了基于电液位置伺服系统的自适应模糊滑模变结构控制系统。分析了采煤机自动调高的依据条件,建立了采煤机调高系统的数学模型,得到了采煤机调高系统的控制变量。采用自适应模糊滑模变结构控制策略,设计了采煤机自动调高控制器,并分析了其稳定性。利用MATLAB对采煤机调高控制器进行了仿真,仿真结果表明,采用自适应模糊滑模变结构的控制系统可以实现采煤机截割预定轨迹的准确跟踪,相对于PID控制技术,其跟踪误差较小,控制效果较理想。  相似文献   

20.
设计了一套由三轴直角坐标机器人、线激光传感器和工业计算机组成的焊缝跟踪系统。研究了该系统所涉及的测量原理、特征点测量方法和基于模糊自适应的控制方法。通过高斯核相关算法(KCF)在焊接过程中实时检测焊缝特征点,并根据测量原理计算获得特征点相对于相机坐标系的三维坐标值。设计了一种自适应模糊控制器,通过自适应模糊控制器计算坐标的偏差值和偏差变化率得到焊枪末端运动轨迹的控制量,同时对模糊控制器的输入输出论域、模糊规则和隶属函数进行实时动态更新。实施了焊缝跟踪实验。结果显示:采用最大焊接电流为350 A的惰性气体保护焊(MIG),在强烈弧光和飞溅的干扰下,该系统能实时跟踪焊接工件,跟踪精度为0.325 3mm,传感器测量频率为20Hz。焊接过程中焊枪末端运行平稳,焊缝轨迹跟踪准确,且抗干扰能力,能满足焊接应用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号