首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The near-eutectic Sn-3.5 wt.% Ag-0.7 wt.% Cu (Sn-3.5Ag-0.7Cu) alloy was doped with rare earth (RE) elements of primarily Ce and La of 0.05–0.25 wt.% to form Sn-3.5Ag-0.7Cu-xRE solder alloys. The aim of this research was to investigate the effect of the addition of RE elements on the microstructure and solderability of this alloy. Sn-3.5Ag-0.7Cu-xRE solders were soldered on copper coupons. The thickness of the intermetallic layer (IML) formed between the solder and Cu substrate just after soldering, as well as after thermal aging at 170°C up to 1000 h, was investigated. It was found that, due to the addition of the RE elements, the size of the Sn grains was reduced. In particular, the addition of 0.1wt.%RE to the Sn-3.5Ag-0.7Cu solder improved the wetting behavior. Besides, the IML growth during thermal aging was inhibited.  相似文献   

2.
稀土元素对Sn-0.2Ag-0.7Cu钎料合金物理性能的影响   总被引:1,自引:0,他引:1  
在筛选出综合性能较好的Sn-0.2Ag-0.7Cu钎料合金中,添加微量混合稀土元素(RE)以提高钎料的焊接性能。研究了稀土的添加量对其熔化温度、电导率和固–液相线温差等焊接性能的影响。结果表明:添加w(RE)为0.1%~0.5%时,固–液相线温差小于15℃,符合现行钎焊工艺要求,且对钎料合金的熔化温度和电导率影响不大。  相似文献   

3.
Constitutive relations on creep for SnAgCuRE lead-free solder joints   总被引:1,自引:0,他引:1  
Taking the most promising substitute of the Sn-3.8Ag-0.7Cu solder as the research base, investigations were made to explore the effect of rare earths (REs) on the creep performance of the Sn-3.8Ag-0.7Cu solder joints. The SnAgCu-0.1RE solder with the longest creep-rupture life was selected for subsequent research. Creep strain tests were conducted on Sn-3.8Ag-0.7Cu and SnAgCu-0.1RE solder joints in the intermediate temperature range from 298 K to 398 K, corresponding to the homologous temperatures η=0.606, 0.687, 0.748, and 0.809 and η = 0.602, 0.683, 0.743, and 0.804, respectively, to acquire the relevant creep parameters, such as stress exponent and activation energy, which characterize the creep mechanisms. The final creep constitutive equations for Sn-3.8Ag-0.7Cu and SnAgCu-0.1RE solder joints were established, demonstrating the dependence of steady-state creep rate on stress and temperature. By correcting the apparent creep-activation energy of Sn-3.8Ag-0.7Cu and SnAgCu-0.1RE solder joints from the experiments, the true creep-activation energy is obtained. Results indicated that at low stress, the true creep-activation energy of Sn-3.8Ag-0.7Cu and SnAgCu-0.1RE solder joints is close to the lattice self-diffusion activation energy, so the steady-state creep rates of these two solder joints are both dominated by the rate of lattice self-diffusion. While at high stress, the true creep-activation energy of Sn-3.8Ag-0.7Cu and SnAgCu-0.1RE solder joints is close to the dislocation-pipe diffusion activation energy, so the steady-state creep rates are dominated by the rate of dislocation-pipe diffusion. At low stress, the best-fit stress exponents n of Sn-3.8Ag-0.7Cu and SnAgCu-0.1RE solder joints are 6.9 and 8.2, respectively, and the true creep-activation energy of them both is close to that of lattice self-diffusion. At high stress, it equals 11.6 and 14.6 for Sn-3.8Ag-0.7Cu and SnAgCu-0.1RE solder joints, respectively, and the true creep-activation energy for both is close to that of the dislocation-pipe diffusion. Thus, under the condition of the experimental temperatures and stresses, the dislocation climbing mechanism serves as the controlling mechanism for creep deformation of Sn-3.8Ag-0.7Cu and SnAgCu-0.1RE solder joints. The creep values of Sn-3.8Ag-0.7Cu and SnAgCu-0.1RE solder joints are both controlled by dislocation climbing. Dislocation glide and climb both contribute to creep deformation, but the controlling mechanism is dislocation climb. At low stress, dislocation climbing is dominated by the lattice self-diffusion process in the Sn matrix and dominated by the dislocation-pipe diffusion process at high stress.  相似文献   

4.
The effects of rare-earth (RE) element additions on the tensile deformation mechanism of the Sn-3.8Ag-0.7Cu solder alloy have been investigated. The results show that adding RE elements can remarkably improve the tensile strength and elongation of the Sn-3.8Ag-0.7Cu alloy. The increase in the mechanical properties are attributed to the constraints of microcrack growth and grain boundary sliding in the eutectic phase as well as the relaxation of stress concentration in the β-Sn phase due to the addition of the RE elements. It is considered that the RE elements strengthen the eutectic phase and increase the deformation resistance of this alloy.  相似文献   

5.
This study was concerned with the effect of thermal aging on the impact properties of solder joints. Three kinds of solders, conventional Sn-37Pb solder, Sn-3.8Ag-0.7Cu solder, and Sn-3.8Ag-0.7Cu doped with rare-earth (RE) elements, were selected to manufacture joint specimens for the Charpy impact test. U-notch specimens were adopted and isothermally aged at 150°C for 100 h and 1000 h, and then impacted by using a pendulum-type impact tester at room temperature. The Sn-37Pb solder joints exhibited higher performance in terms of impact absorbed energy in the as-soldered and 100 h thermally aged conditions. Interestingly, the Sn-3.8Ag-0.7Cu solder joints exhibited improved performance for the impact value after 1000 h of thermal aging. For the Sn-37Pb and Sn-3.8Ag-0.7Cu solder joints, the impact absorbed energies initially increased when the storage duration was limited to 100 h, and then gradually decreased with its further increase. For the Sn-3.8Ag-0.7Cu-RE specimens, impact performance decreased directly with increasing thermal aging. Furthermore, scanning electron microscopy (SEM) observation showed that the fracture paths were focused on the interface zone for the three kinds of joints in the aged conditions. For the Sn-37Pb joints, the fracture surfaces mainly presented a ductile fracture mode. For the Sn-3.8Ag-0.7Cu joints, with microstructure coarsening, crack propagation partly shifted towards the Sn/Cu6Sn5 interface. Compared with the 100 h aged joints, the area fraction of intergranular fracture of Sn grains on the Sn-3.8Ag-0.7Cu fracture surfaces was increased when the aging time was 1000 h. On the contrary, the fracture morphologies of Sn-3.8Ag-0.7Cu-RE were mainly brittle as thermal aging increased. Thus, an interrelationship between impact energy value and fracture morphology was observed.  相似文献   

6.
Charpy impact tests on three kinds of as-soldered U-notch specimens were performed with reference to the American Society of Testing Materials (ASTM) standard E23-07 by using a pendulum-type impact tester at room temperature. Three kinds of solders, conventional Sn-37Pb, Sn-3.8Ag-0.7Cu, and Sn-3.8Ag-0.7Cu doped with rare-earth (RE) elements, were selected to fabricate the joint specimens for the impact test. The three joints demonstrate similar impact toughness values, with averages of 11.4 kJ/m2, 10.4 kJ/m2, and 11.0 kJ/m2, respectively. Under observation by scanning electron microscopy (SEM), the Sn-37Pb joint exhibited mainly ductile fracture morphology. Fractographic observations of lead-free joints exhibited a mixture of ductile and brittle morphologies. The addition of RE elements resulted in an impact toughness that was slightly higher than that of the Sn-3.8Ag-0.7Cu alloy. The impact toughness and the fracture mode were notably dependent on the type of solder. Additionally, the thickness of the intermetallic compound (IMC) layer had a remarkable influence on the fracture path and impact toughness of the solder joints. An erratum to this article can be found at  相似文献   

7.
Properties of lead-free solder SnAgCu containing minute amounts of rare earth   总被引:10,自引:0,他引:10  
Because of excellent wetting and mechanical properties, SnAgCu solder alloys have been regarded as the most promising Pb-free substitutes for the SnPb solder. The Sn-3.8Ag-0.7Cu solder has garnered attention because of its creep resistance. However, under the drives of increasingly finer pitch design and severe service conditions, novel lead-free solders with higher creep performance may be needed. Adding a surface-active element to an alloy is an effective way to improve the high-temperature performance of the solder. The present work focuses on the effect of rare earth (RE) on the physical properties, spreading property, and mechanical properties of SnAgCu solder. Results show that the creep-rupture life of SnAgCu solder joints at room temperature could be notably increased by adding a minute amount of RE, up to 7 times more than that of SnAgCu solder joints when containing 1.0wt.%RE. The differential scanning calorimetry (DSC) curves indicated that the melting temperature of SnAgCu solder with RE increased a little, and no lower melting-temperature, eutectic endothermal peak appears on the DSC curve. The electrical conductivity of the solder decreased slightly, but it is still superior to the SnPb eutectic solder. Compared to that of SnPb solder, the coefficient of thermal expansion (CTE) of SnAgCu (RE) is closer to copper, which usually serves as the substrate of printed circuit boards (PCBs). It is assumed that this will comparably reduce the thermal stress derived from thermal mismatch between the solder and the PCBs. The RE had no apparent effect on the spreading property, but when RE added up to 1.0 wt.%, the spreading area of the solder on the copper substrate decreased, obviously, because of mass oxide. The RE improved the ultimate tensile strength little, but it increased the elongation up to 30%. However, as the content of the RE increases, the elongation of the solder gradually decreased to the level of SnAgCu when the RE exceeds 0.25 wt.%. Additionally, RE made the elastic modulus of SnAgCu solder increase, so the resistance to elastic deformation of the solder is enhanced. The microstructure of SnAgCuRE led to a refining trend as the RE content increased. The RE compounds appeared in the solder when RE was 0.1 wt.%. This deteriorates the mechanical properties of the solder. The fractography of the tensile specimen containing 0.1 wt.% indicated a superior ductility to Sn-3.8Ag-0.7Cu bulk solder. However, as RE is increased to 1.0 wt.%, the fractography shows less ductile characteristics, which is believed to serve as the reason that the elongation of solder degrades as RE increases. Summarily, the most suitable content of RE is within 0.05–0.5 wt.% and is inadvisable beyond 1.0 wt.%.  相似文献   

8.
Small amounts of the rare-earth element Ce were added to the Sn-rich lead-free eutectic solders Sn-3.5Ag-0.7Cu, Sn-0.7Cu, and Sn-3.5Ag to improve their properties. The microstructures of the solders without Ce and with different amounts (0.1 wt.%, 0.2 wt.%, and 0.5 wt.%) of Ce were compared. The microstructure of the solders became finer with increasing Ce content. Deviation from this rule was observed for the Sn-Ag-Cu solder with 0.2 wt.% Ce, and for the Sn-0.7Cu eutectic alloy, which showed the finest microstructure without Ce. The melting temperatures of the solders were not affected. The morphology of intermetallic compounds (IMC) formed at the interface between the liquid solders and a Cu substrate at temperatures about 40°C above the melting point of the solder for dipping times from 2 s to 256 s was studied for the basic solder and for solder with 0.5 wt.% Ce addition. The morphology of the Cu6Sn5 IMC layer developed at the interface between the solders and the substrate exhibited the typical scallop-type shape without significant difference between solders with and without Ce for the shortest dipping time. Addition of Ce decreased the thickness of the Cu6Sn5 IMC layer only at the Cu/Sn-Ag-Cu solder interface for the 2-s dipping. A different morphology of the IMC layer was observed for the 256-s dipping time: The layers were less continuous and exhibited a broken relief. Massive scallops were not observed. For longer dipping times, Cu3Sn IMC layers located near the Cu substrate were also observed.  相似文献   

9.
The impact behavior of solder joints was studied using three different high-velocity impact tests: the U-notch Charpy impact test, the no-notch Charpy impact test, and a laboratory-designed drop test. The solder joints were made of five solder alloys, Sn-37Pb, Sn-3.8Ag-0.7Cu, Sn-2.0Ag-0.7Cu, Sn-1.0Ag-0.7Cu, and Sn-0.7Ag-0.7Cu (in wt.%), in which the traditional Cu/solder/Cu butt joint was used. All three impact tests gave the same trend of the impact behavior of the solder joints, with the Sn-37Pb joints having the highest impact resistance and the Sn-3.8Ag-0.7Cu joints having the lowest impact resistance. For the lead-free joints, the Sn-1.0Ag-0.7Cu joints had better impact resistance than the Sn-2.0Ag-0.7Cu joints, and the Sn-2.0Ag-0.7Cu joints better than the Sn-0.7Ag-0.7Cu joints. The impact behavior was correlated well to the fracture morphologies observed by scanning electron microscopy (SEM). Comparison of the three tests showed that the no-notch Charpy impact test is a promising method for evaluating the drop performance of solder joints.  相似文献   

10.
We have done experimental research on the dissolution rate and intermetallic growth on Cu, Ni, and CuNi-alloy substrates as a function of time and Cu/Ni ratio of the substrate. Reactions that occur when CuNi metallizations are soldered with lead-free solders were investigated. The experiments were performed using Sn-3.5Ag and Sn-3.8Ag-0.7Cu solders and different CuNi alloys. To determine the rate of dissolution of the substrate material into the solder, CuNi foils of different concentrations were immersed in Sn-3.5Ag and Sn-3.8Ag-0.7Cu solder baths for soldering times ranging from 15 sec to 5 min at 250°C. In addition, reflows of solder balls were made on top of bulk substrates to study the reaction when there is a practically infinite amount of CuNi available compared to the amount of solder. Thin film experiments were also done, where Ni containing under bump metallizations (UBMs) were fabricated and reflowed with eutectic SnAg solder balls. The nickel slows down the dissolution of the UBM into the solder and the formation of intermetallics during reflow compared to Cu metallizations. The solder/UBM interfaces were analyzed with SEM to find out how Ni concentration affects the reaction, and how much Ni is needed to obtain a sufficiently slow reaction rate.  相似文献   

11.
Sn-0.3Ag-0.7Cu-xBi低银无铅钎料的润湿性   总被引:2,自引:2,他引:0  
以Bi为添加剂对低银型Sn-0.3Ag-0.7Cu无铅钎料进行改性,应用SAT—5100型润湿平衡仪对Sn-0.3Ag-0.7Cu-xBi(x=0,1,3和4.5)钎料的润湿性能作了对比分析。结果表明:适量Bi元素的加入可以改善Sn-0.3Ag-0.7Cu钎料合金的润湿性能,且在240℃下Sn-0.3Ag-0.7Cu-3.0Bi无铅钎料具有最佳的润湿性能,在250℃其润湿力达到最大值3.2×10–3N/cm。  相似文献   

12.
We developed a new lead-free solder alloy, an Sn-Ag-Cu base to which a small amount of Ni and Ge is added, to improve the mechanical properties of solder alloys. We examined creep deformation in bulk and through-hole (TH)␣form for two lead-free solder alloys, Sn-3.5Ag-0.5Cu-Ni-Ge and Sn-3.0Ag-0.5Cu, at elevated temperatures, finding that the creep rupture life of the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy was over three times better than that of the Sn-3.0Ag-0.5Cu solder at 398 K. Adding Ni to the solder appears to make microstructural development finer and more uniform. The Ni added to the solder readily combined with Cu to form stable intermetallic compounds of (Cu, Ni)6Sn5 capable of improving the creep behavior of solder alloys. Moreover, microstructural characterization based on transmission electron microscopy analyses observing creep behavior in detail showed that such particles in the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy prevent dislocation and movement.  相似文献   

13.
The mechanical and electrical properties of several Pb-free solder joints have been investigated including the interfacial reactions, namely, the thickness and morphology of the intermetallic layers, which are correlated with the shear strength of the solder joint as well as its electrical resistance. A model joint was made by joining two “L-shaped” copper coupons with three Pb-free solders, Sn-3.5Ag (SA), Sn-3.8Ag-0.7Cu (SAC), and Sn-3.5Ag-3Bi (SAB) (all in wt.%), and combined with two surface finishes, Cu and Ni(P)/Au. The thickness and morphology of the intermetallic compounds (IMCs) formed at the interface were affected by solder composition, solder volume, and surface finish. The mechanical and electrical properties of Pb-free solder joints were evaluated and correlated with their interfacial reactions. The microstructure of the solder joints was also investigated to understand the electrical and mechanical characteristics of the Pb-free solder joints.  相似文献   

14.
Soldering with the lead-free tin-base alloys requires substantially higher temperatures (∼235–250°C) than those (213–223°C) required for the current tin-lead solders, and the rates for intermetallic compound (IMC) growth and substrate dissolution are known to be significantly greater for these alloys. In this study, the IMC growth kinetics for Sn-3.7Ag, Sn-0.7Cu, and Sn-3.8Ag-0.7Cu solders on Cu substrates and for Sn-3.8Ag-0.7Cu solder with three different substrates (Cu, Ni, and Fe-42Ni) are investigated. For all three solders on Cu, a thick scalloped layer of η phase (Cu6Sn5) and a thin layer of ε phase (Cu3Sn) were observed to form, with the growth of the layers being fastest for the Sn-3.8Ag-0.7Cu alloy and slowest for the Sn-3.7Ag alloy. For the Sn-3.8Ag-0.7Cu solder on Ni, only a relatively uniform thick layer of η phase (Cu,Ni)6Sn5 growing faster than that on the Cu substrate was found to form. IMC growth in both cases appears to be controlled by grain-boundary diffusion through the IMC layer. For the Fe-42Ni substrate with the Sn-3.8Ag-0.7Cu, only a very thin layer of (Fe,Ni)Sn2 was observed to develop.  相似文献   

15.
以Sn2.5Ag0.7Cu为基础,添加微量的稀土(RE)r(Ce︰La)为4︰1,研究了钎焊接头的显微组织与力学性能。结果表明:添加微量的RE后,钎料与Cu试样间的界面层厚度明显减小,且界面处的组织更加平滑,相应地其剪切强度随微量RE的添加而增大,并在RE含量(质量分数)为0.1%时达到最大值36MPa。  相似文献   

16.
The Sn-0.7%Cu alloy has been considered as a lead-free alternative to lead-tin alloys. In this work, various small amounts of rare earth (RE) elements, which are mainly Ce and La, have been added to the Sn-0.7%Cu alloy to form new solder alloys. It was found that the new alloys exhibit mechanical properties superior to that of the Sn-0.7%Cu alloy. In particular, the addition of up to 0.5% of RE elements is found to refine the effective grain size and provide a fine and uniform distribution of Cu6Sn5 in the solidified microstructure. Tensile, creep, and microhardness tests were conducted on the solder alloys. It was found that significant improvements of the tensile strength, microhardness, and creep resistance were obtained with RE element addition. Upon aging at 150°C for 20 h, the microstructure of Sn-Cu-RE is more stable than that of the Sn-Cu alloy.  相似文献   

17.
Three kinds of Sn-Ag-based lead-free solders, Sn-3.5Ag-0.7Cu, Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge, and Sn-3.5Ag-0.07Ni (in wt.%), were selected to explore the effect of microelements (Ni and Ge) on the interfacial reaction between the solder and the Cu substrate. The thickness of the interfacial intermetallics formed with the Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge and Sn-3.5Ag-0.07Ni solders is several times that of the Sn-3.5Ag-0.7Cu solder. The added microelements converted the feature of interfacial intermetallics from pebble shape to worm shape. However, the results of x-ray diffraction (XRD) analysis suggest that the interfacial intermetallics formed with both solders have the same crystal structure. The results of energy dispersive spectroscopy (EDS) analysis show that the major interfacial intermetallic formed with the Sn-3.5Ag-0.7Cu solder is Cu6Sn5, while it is (Cux,Ni1−x)6Sn5 with Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge. Ni influences the interfacial intermetallics and plays the influential role on the difference of interfacial reaction rate between liquid solder and solid Cu and the morphology of interfacial intermetallics. Additionally, the growth kinetics of the interfacial intermetallic compounds (IMCs) formed in the systems of Cu/Sn-3.5Ag-0.7Cu and Cu/Sn-3.5Ag-0.07Ni at high-temperature storage was also explored.  相似文献   

18.
This study aims to investigate the shear and tensile impact strength of solder ball attachments. Tests were conducted on Ni-doped and non-Ni-doped Sn-0.7wt.% Cu, Sn-37wt.% Pb and Sn-3.0wt.% Ag-0.7wt.% Cu solder ball grid arrays (BGAs) placed on Cu substrates, which were as-reflowed and aged, over a wide range of displacement rates from 10 to 4000 mm/s in shear and from 1 to 400 mm/s in tensile tests. Ni additions to the Sn-0.7wt.% Cu solders has slowed the growth of the interface intermetallic compounds (IMCs) and made the IMC layer morphology smooth. As-reflowed Ni-doped Sn-0.7wt.% Cu BGA joints show superior properties at high speed shear and tensile impacts compared to the non-Ni-doped Sn-0.7wt.% Cu and Sn-3.0wt.% Ag-0.7wt.% Cu BGAs. Sn-3.0wt.% Ag-0.7wt.% Cu BGAs exhibit the least resistance in both shear and tensile tests among the four compositions of solders, which may result from the cracks in the IMC layers introduced during the reflow processes.  相似文献   

19.
Ball-grid array (BGA) samples were aged at 155°C up to 45 days. The formation and the growth of the intermetallic phases at the solder joints were investigated. The alloy compositions of solder balls included Sn-3.5Ag-0.7Cu, Sn-1.0Ag-0.7Cu, and 63Sn-37Pb. The solder-ball pads were a copper substrate with an Au/Ni surface finish. Microstructural analysis was carried out by electron microprobe. The results show that a ternary phase, (Au,Ni)Sn4, formed with Ni3Sn4 in the 63Sn-37Pb solder alloy and that a quaternary intermetallic phase, (Au,Ni)2Cu3Sn5, formed in the Sn-Ag-Cu solder alloys. The formation mechanism of intermetallic phases was associated with the driving force for Au and Cu atoms to migrate toward the interface during aging.  相似文献   

20.
This study compares the high-Ag-content Sn-3Ag-0.5Cu with the low- Ag-content Sn-1Ag-0.5Cu solder alloy and the three quaternary solder alloys Sn-1Ag-0.5Cu-0.1Fe, Sn-1Ag-0.5Cu-0.3Fe, and Sn-1Ag-0.5Cu-0.5Fe to understand the beneficial effects of Fe on the microstructural stability, mechanical properties, and thermal behavior of the low-Ag-content Sn-1Ag-0.5Cu solder alloy. The results indicate that the Sn-3Ag-0.5Cu solder alloy possesses small primary β-Sn dendrites and wide interdendritic regions consisting of a large number of fine Ag3Sn intermetallic compound (IMC) particles. However, the Sn-1Ag-0.5Cu solder alloy possesses large primary β-Sn dendrites and narrow interdendritic regions of sparsely distributed Ag3Sn IMC particles. The Fe-bearing SAC105 solder alloys possess large primary β-Sn dendrites and narrow interdendritic regions of sparsely distributed Ag3Sn IMC particles containing a small amount of Fe. Moreover, the addition of Fe leads to the formation of large circular FeSn2 IMC particles located in the interdendritic regions. On the one hand, tensile tests indicate that the elastic modulus, yield strength, and ultimate tensile strength (UTS) increase with increasing Ag content. On the other hand, increasing the Ag content reduces the total elongation. The addition of Fe decreases the elastic modulus, yield strength, and UTS, while the total elongation is still maintained at the Sn-1Ag-0.5Cu level. The effect of aging on the mechanical behavior was studied. After 720 h and 24 h of aging at 100°C and 180°C, respectively, the Sn-1Ag-0.5Cu solder alloy experienced a large degradation in its mechanical properties after both of the aging conditions, whereas the mechanical properties of the Sn-3Ag-0.5Cu solder alloy degraded more dramatically after 24 h of aging at 180°C. However, the Fe-bearing SAC105 solder alloys exhibited only slight changes in their mechanical properties after both aging procedures. The inclusion of Fe in the Ag3Sn IMC particles suppresses their IMC coarsening, which stabilizes the mechanical properties of the Fe-bearing SAC105 solder alloys after aging. The results from differential scanning calorimetry (DSC) tests indicate that the addition of Fe has a negligible effect on the melting behavior. However, the addition of Fe significantly reduces the solidification onset temperature and consequently increases the degree of undercooling. In addition, fracture surface analysis indicates that the addition of Fe to the Sn-1Ag-0.5Cu alloy does not affect the mode of fracture, and all tested alloys exhibited large ductile dimples on the fracture surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号