首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Polypropylene (PP)‐clay nanocomposites were obtained and studied by using three different coupling agents, glycidyl methacrylate (GMA), acrylic acid (AA), and maleic anhydride (MA). Three different clays, natural montmorillonite (Cloisite Na+) and chemically modified clays Cloisite 20A and Cloisite 30B, have also been used. Nanocomposites were prepared by melt‐blending in a twin‐screw extruder using two mixing methods: two‐step mixing and one‐step mixing. The relative influence of each factor was observed from structural analysis by WAXD, POM, TEM, and mechanical properties. The results were analyzed in terms of the effect of each compatibilizing agent and incorporation method in the clay dispersion and mechanical properties of the nanocomposite. Experimental results showed that clay dispersion and interfacial adhesion are greatly affected by the kind of matrix modification. The polarity and reactivity of polar groups give as a result better interfacial adhesion and subsequent mechanical performance. PP‐g‐GMA and PP‐g‐MA were better compatibilizing agents than PP‐g‐AA. Better dispersion and exfoliation for the nanoclays were obtained when using two‐step mixing than one‐step mixing conditions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4748–4756, 2006  相似文献   

2.
(Low‐density polyethylene) (LDPE)/clay nanocomposites were prepared by melt blending in a twin‐screw extruder by using different mixing methods. Zinc‐neutralized carboxylate ionomer was used as a compatibilizer. Blown films of the nanocomposites were then prepared. The effect of mixing method on the clay dispersion and properties of the nanocomposites was evaluated by wide‐angle X‐ray diffraction analysis, mechanical properties, thermal properties, and barrier properties. The structure and properties of nanocomposites containing different amounts of nanoclay prepared by selected mixing techniques were also investigated. It was found that melt compounding of Surlyn/clay masterbatch with pure LDPE and Surlyn (two‐step‐a method) results in better dispersion and intercalation of the nanofillers than melt mixing of LDPE/Surlyn/clay masterbatch with pure LDPE and surlyn (two‐step‐b method) and direct mixing of LDPE with clay. The films containing ionomer have good barrier properties. A wide‐angle X‐ray diffraction pattern indicates that intercalation of polymer chains into the clay galleries decreases by increasing the clay content. Barrier properties and tensile modulus of the films were improved by increasing the clay content. In addition, tensile strength increased in the machine direction, but it decreased in the transverse direction by increasing the clay content. DSC results showed that increasing the clay content does not show significant change in the melting and crystallization temperatures. The results of thermogravimetric analysis showed that the thermal stability of the nanocomposites decreased by increasing the clay content more than 1 wt%. J. VINYL ADDIT. TECHNOL., 21:60–69, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
This work discloses a novel one‐pot preparation method of polypropylene (PP)/clay nanocomposites with high degree of clay delamination and improved thermal, mechanical and rheological properties. The in situ simultaneous synthesis of carboxylate clay from native clay and ionomer of PP‐graft maleic anhydride (PP‐g‐MA) through trihydrate sodium acetate addition, combined with water injection in the extrusion process, appears to be a valuable alternative to the use of organoclay for producing PP/PP‐g‐MA/clay nanocomposites. The influence of PP‐g‐MA graft content, and of its ionomer form, onto the clay dispersion has been especially investigated. PP‐g‐MA of low graft content is compared to a home‐made highly grafted PP‐g‐MA synthesized in the presence of N‐bromosuccinimide (NBS). The nanocomposites prepared by combining the use of NBS‐mediated PP‐g‐MA, trihydrate sodium acetate and water injection exhibit the highest clay dispersion. Thermal, rheological, and mechanical properties of the nanocomposites have been measured. POLYM. COMPOS., 36:644–650, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
Dynamically vulcanized thermoplastic elastomers nanocomposites (TPV nanocomposites) based on linear low density polyethylene (LLDPE)/reclaimed rubber/organoclay were prepared via one‐step melt blending process. Maleic anhydride grafted polyethylene (PE‐g‐MA) was used as a compatibilizing agent. The effects of reclaimed rubber content (10, 30, and 50 wt %), nanoclay content (3, 5, and 7 wt %), and PE‐g‐MA on the microstructure, thermal behavior, mechanical properties, and rheological behavior of the nanocomposites were studied. The TPV nanocomposites were characterized by X‐ray diffraction, transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimeter, mechanical properties, and rheometry in small amplitude oscillatory shear. SEM photomicrographs of the etched samples showed that the elastomer particles were dispersed homogeneously throughout the polyethylene matrix and the size of rubber particles was reduced with introduction of the organoclay particles and compatibilizer. The effects of different nanoclay contents, different rubber contents, and compatibilizer on mechanical properties were investigated. Increasing the amount of nanoclay content and adding the compatibilizer result in an improvement of the tensile modulus of the TPV nanocomposite samples. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Linear low‐density polyethylene (LLDPE) is one of the most widely used polymers in many fields, but it is difficult to prepare LLDPE/clay nanocomposites because of the hydrophobic nature of LLDPE. In this study, the effectiveness of low molecular weight trimethoxysilyl‐modified polybutadiene (Organosilane) as a compatibilizer for LLDPE/clay nanocomposites was studied using X‐ray diffraction (XRD) and correlated with mechanical properties. Organosilane is known to react with dicumyl peroxide (DCP) to form free radicals, which react with LLDPE increasing the polarity of the LLDPE. Based on XRD and mechanical tests, it was concluded that Organosilane is a good compatibilizer for LLDPE and clay. Also when Organosilane was used in preparing LLDPE/clay nanocomposite foams, most mechanical properties were improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
BACKGROUND: Polymer/clay (silicate) systems exhibit great promise for industrial applications due to their ability to display synergistically advanced properties with relatively small amounts of clay loads. The effects of various compatibilizers on styrene–ethylene–butylene–styrene block copolymer (SEBS)/clay nanocomposites with various amounts of clay using a melt mixing process are investigated. RESULTS: SEBS/clay nanocomposites were prepared via melt mixing. Two types of maleated compatibilizers, styrene–ethylene–butylene–styrene block copolymer grafted maleic anhydride (SEBS‐g‐MA) and polypropylene grafted maleic anhydride (PP‐g‐MA), were incorporated to improve the dispersion of various amounts of commercial organoclay (denoted as 20A). Experimental samples were analyzed using X‐ray diffraction and transmission electron microscopy. Thermal stability was enhanced through the addition of clay with or without compatibilizers. The dynamic mechanical properties and rheological properties indicated enhanced interaction for the compatibilized nanocomposites. In particular, the PP‐g‐MA compatibilized system conferred higher tensile strength or Young's modulus than the SEBS‐g‐MA compatibilized system, although SEBS‐g‐MA seemed to further expand the interlayer spacing of the clay compared with PP‐g‐MA. CONCLUSION: These unusual results suggest that the matrix properties and compatibilizer types are crucial factors in attaining the best mechanical property performance at a specific clay content. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
The influence of two different compatibilizers and their combination (maleic anhydride grafted high density polyethylene, HDPE‐g‐MA; maleic anhydride grafted linear low density polyethylene, LLDPE‐g‐MA; and 50/50 wt % mixture of these compatibilizers) on the rheological, thermomechanical, and morphological properties of HDPE/LLDPE/organoclay blend‐based nanocomposites was evaluated. Nanocomposites were obtained by melt‐intercalation in a torque rheometer in two steps. Masterbatches (compatibilizer/nanoclay 2:1) were obtained and subsequently diluted in the HDPE/LLDPE matrix producing nanocomposites with 2.5 wt % of nanoclay. Wide angle X‐ray diffraction (WAXD), steady‐state rheological properties, and transmission electron microscopy (TEM) were used to determine the influence of different compatibilizer systems on intercalation and/or exfoliation process which occurs preferentially in the amorphous phase, and thermomechanical properties. The LLDPE‐g‐MA with a high melt index (and consequently low viscosity and crystallinity) was an effective compatibilizer for this system. Furthermore, the compatibilized nanocomposites with LLDPE‐g‐MA or mixture of HDPE‐g‐MA and LLDPE‐g‐MA exhibited better nanoclay's dispersion and distribution with stronger interactions between the matrix and the nanoclay. These results indicated that the addition of maleic anhydride grafted polyethylene facilitates both, the exfoliation and/or intercalation of the clays and its adhesion to HDPE/LLDPE blend. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1726–1735, 2013  相似文献   

8.
Preparation and morphology of Polyamide 6 (PA6)/high density polyethylene (HDPE)/Styrene/Ethylene–Butylene/Styrene grafted with maleic anhydride (SEBS‐g‐MA)/Modified clay nanocomposites were studied. Mixing was performed using melting process in an extruder co‐rotating twin screw. After etching the materials with boiling toluene and THF at room temperature, the morphology of sample checked by scanning electron microscopy (SEM) analyses. X‐ray diffraction (XRD) used for evaluation of the effects of organo‐clay addition in the structure of nanocomposites. XRD traces showed that the characteristic (001) peak of the nanocomposites shifted to the lower degree region. XRD and SEM results showed more uniformly distribution and dispersion of HDPE in the PA6 matrix. Better sample morphology obtained, regarding less distance, and more uniformity between nanoparticles. The mechanical properties like tensile strength, impact strength, hardness and thermal properties of these toughened nanocomposites are discussed in terms of the nanoclay, SEBS‐g‐MA contents and morphology. Adding nanoclay improved hardness of nanocomposites product but reduced toughness and thermal properties. Meanwhile the presence of SEBS‐g‐MA as a compatibilizer improved toughness, thermal properties, hardness property, and the balance properties are achieved. POLYM. ENG. SCI., 55:29–33, 2015. © 2014 Society of Plastics Engineers  相似文献   

9.
Polypropylene (PP)‐based nanocomposites containing 4 wt% maleic anhydride grafted PP (PP‐g‐MA) and 2 wt% Cloisite 20A (C20A) were prepared using various processing devices, viz., twin‐screw extruder (TSE), single‐screw extruder (SSE), and SSE with an extensional flow mixer (EFM). Two processing methods were employed: (I) masterbatch (MB) preparation in a TSE (with 10 wt% C20A and clay/compatibilizer ratio of 1:2), followed by dilution in TSE, SSE, or SSE + EFM, to 2 wt% clay loading; (II) single pass, i.e., directly compounding of dry‐blended PP‐g‐MA/clay in TSE, SSE, or SSE + EFM. It has been indicated that the quality of clay dispersion, both at micro‐ and nanolevel, of the nanocomposites depends very much on the operating conditions during processing, such as mixing intensity and residence time, thus affecting the mechanical performance. Besides that the degradation of the organoclay and the matrix is also very sensitive to these parameters. According to results of X‐ray diffraction, field emission gun scanning electron microscopy, transmission electron microscopy, and mechanical tests, the samples prepared with MB had better overall clay dispersion, which resulted in better mechanical properties. The processing equipment used for diluting MB had a marginal influence on clay dispersion and nanocomposite performance. POLYM. ENG. SCI., 47:1447–1458, 2007. © 2007 Society of Plastics Engineers  相似文献   

10.
In this study, polypropylene (PP)/clay nanocomposites containing different concentrations of ethylene‐methacrylic acid ionomer (i.e. Surlyn®) were prepared, and the effect of ionomer on clay dispersion was studied via WAXD, rheology, SEM, and TEM. The role of the ionomer in the nanocomposites was compared with that of maleic anhydride grafted PP (PP‐g‐MA), which has been widely used as a compatibilizer in making PP/clay nanocomposites. With an increase in the concentration of compatibilizer, the position of d001 peak of OMMT shifted toward a lower angle for PP‐g‐MA system, while the position remained almost unchanged for Surlyn system, in which a larger interlayer spacing (d001) was found with respect to the former. In rheology, the addition of the ionomer led to a gradual increase in both moduli and complex viscosity, and the nonterminal behavior at low frequency was observed in both systems. In addition, the ternary hybrid containing 20 wt % Surlyn achieved the largest enhancement in relative viscosity, which was more than that of the nanocomposite prepared from pure Surlyn or pure PP, presumably indicative of the existence of strong interaction between the components. Finally, SEM and TEM micrographs demonstrated that exfoliated structure was preferred for PP/Surlyn/OMMT hybrids, while intercalated morphology for PP/PP‐g‐MA/OMMT. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4024–4034, 2007  相似文献   

11.
Ethylene–vinyl alcohol copolymer (EVOH)/organoclay nanocomposites were prepared via a dynamic melt‐intercalation process. The effect of compatibilizers on the melt blending torque, intercalation level, and morphology of EVOH/organoclay systems was investigated. Maleic anhydride grafted ethylene vinyl acetate (EVA‐g‐ MA), or maleic anhydride grafted linear low‐density polyethylene (LLDPE‐g‐MA), were used to compatibilize EVOH with clay, at various concentrations (1, 5, and 10 wt %). Computer‐simulation techniques are used to predict structural properties and interactions of EVOH with compatibilizers in the presence and absence of clay. The simulation results strongly support the experimental findings and their interpretation. X‐ray diffraction shows enhanced intercalation within the galleries when the compatibilizers were added. Interestingly, results were obtained for the EVOH/clay/compatibilizer systems, owing to a high level of interaction developed in these systems. Thermal analysis shows that, upon increasing the compatibilizer content, lower crystallinity levels result, until at a certain compatibilizer content no crystallization is taking place. Significantly higher mixing viscosity levels were obtained for the EVOH/organoclay blends compared with the neat EVOH polymer. The storage modulus was higher compared with the uncompatibilized EVOH/organoclay blend in the presence of EVA‐g‐MA compatibilizer (at all concentrations), and only at low contents of LLDPE‐g‐MA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2060–2066, 2005  相似文献   

12.
Nylon 6 (Ny)/polypropylene (PP)/maleated polypropylene (PP‐g‐MA)/organoclay/wollastonite composites were prepared by melt processing. The polymers' composition was kept constant ([70PP/30Ny]/4PP‐g‐MA). Melt compounding was conducted using a twin‐screw extruder in three different methods: (1) simultaneous incorporation of the components into the compounding equipment, (2) preparation of [Ny6/clay] concentrate, and then in a second step, mixing the other components with the concentrate, and (3) mixing of PP with wollastonite and clay followed by the addition of Ny6 and PP‐g‐MA in the second step. Injection‐molded specimens were characterized in tension, scanning electron microscopy, X‐ray diffraction (XRD), and differential scanning calorimetry. The sequence of component addition greatly influences the structure and properties of the composites. Enhanced mechanical properties were achieved when the two‐step mixing procedure was used for the PP/Ny6/PP‐g‐MA/clay system (method 2) and also for the PP/Ny6/PP‐g‐MA/clay/wollastonite system (method 3). The XRD pattern of the PP/Ny6/PP‐g‐MA/clay nanocomposites produced by the two‐step mixing method does not show a characteristic basal reflection of the pristine organoclay, indicating a predominately exfoliated structure of clay. POLYM. COMPOS., 28:417–424, 2007. © 2007 Society of Plastics Engineers  相似文献   

13.
Propylene random copolymer (PPR)/styrene‐ethylene‐butylene‐styrene block copolymer (SEBS)/compatibilizer/organic‐montmorillonite (OMMT) quaternary nanocomposites and PPR/compatibilizer/OMMT ternary nanocomposites were prepared via two‐stage melt blending and influences of compatibilizers, maleic anhydride (MA) grafted styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), poly(octene‐co‐ethylene) (POE‐g‐MA), or propylene block copolymers (PPB‐g‐MA), on rheology and mechanical properties of the nanocomposites were investigated. The results of X‐ray diffraction measurement and transmission electron microscopy observation showed that OMMT layers were mainly intercalated in the nanocomposites except for the mainly exfoliated structure in the quaternary nanocomposites using POE‐g‐MA as compatibilizer. The nanocomposites exhibited pseudo‐solid like viscoelasticity in low frequencies and shear‐thinning in high shear rates. As far as OMMT dispersion was concerned, POE‐g‐MA was superior to SEBS‐g‐MA and PPB‐g‐MA, which gives rise to the highest viscosities in both the ternary and quaternary nanocomposites. The quaternary nanocomposites containing POE‐g‐MA were endowed with balanced toughness and rigidity. It was suggested that a suitable combination of compatibilizer and SEBS was an essentially important factor for adjusting the OMMT dispersion and distribution, the rheological and mechanical performances of the nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Understanding the complex mechanism of dispersion and intercalation of the clay tactoids can allow us to control the final morphology, homogeneity, and the macroscopic properties of clay nanocomposites. The objective of this work is a multiscale study of the dispersion state of PP/organoclay and PP‐g‐MA/organoclay composite. The microscopic investigation, WAXS diffractograms, rheological analysis, and mechanical properties were used to characterize the dispersion of organoclay in PP and PP‐g‐MA matrices during melt blending in two different shear rates. The morphological results show a system of aggregating intercalated clay particles which disperse by increasing mixing time with a strain‐controlled process and a very quick intercalation process in early mixing times for PP‐g‐MA/organoclay nanocomposite, while PP/organoclay samples only form microcomposites. The relative network modulus of these intercalated particles as a function of mixing time was obtained; and the tensile modulus of nanocomposite samples were compared with Halpin‐Tsai model prediction. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

15.
Summary Polypropylene-clay nanocomposites were prepared by melt intercalation in a twin screw extruder using two mixing methods: two-step mixing and one-step mixing. The effect of using two different kinds of PP-g-MA (polypropylene-grafted maleic anhydride), with graft efficiencies of 0.1 and 1.0 wt% of MA and with different molecular weight, on clay dispersion and mechanical properties of nanocomposites was investigated. Three different clays, natural montmorillonite (Cloisite Na+) and chemically modified clays Cloisite 20A and Cloisite 30B were used. The relative influence of each factor was observed from structural analysis by WAXD, TEM, and mechanical properties. X-ray diffractometry (XRD) was used to investigate the intercalation effect in the nanocomposites. The results indicted that the intercalation effect and mechanical properties, specially modulus, tensile strength and impact strength, were enhanced by increasing the content of MA, using maleated PP with higher graft efficiency, and using the two step mixing conditions. Better dispersion and exfoliation were obtained when using clay 20A than 30B and natural Na+ montmorillonite. The results showed that clay dispersion and interfacial adhesion are greatly affected by the kind of maleated PP. The increase in content of polar groups gives as a result better interfacial adhesion and subsequent mechanical performance.  相似文献   

16.
The performance of Polyethylene (PE)/Clay/Silver nanocomposites is dependent to a great extent on the properties of filler–matrix interface. To improve the interfacial properties in PE/Clay/Silver composites, different types of compatibilizers or adhesion promoters were introduced. The compatibilization provided by maleic anhydride (MA), itaconic acid (IA) and 2-[2-(dimethylamine)-ethoxy] ethanol (DMAE) functionalized PEs for forming PE-based nanocomposites was studied and compared. IA was grafted into PE by melt mixing to obtain PEgIA (compatibilizer 1), thereafter, PEgIA and PEgMA (compatibilizer 2) were reacted with DMAE also by melt mixing to obtain PEgI-DMAE (compatibilizer 3) and PEgM-DMAE (compatibilizer 4). These compatibilizers were reacted using ultrasound with a solution of AgNO3 0.04 M and ethylene glycol. Ammonium hydroxide was added in a ratio of 2:1 M with respect to silver nitrate. These silver coated compatibilizers were mixed with PE and with a quaternary ammonium modified montmorillonite clay (Nanomer I28E), thus forming the different hybrid PE/Clay/Silver nanocomposites. FTIR confirmed the formation of these compatibilizers. All the DMAE compatibilized nanocomposites had better filler (clay and silver) dispersion and exfoliation. XRD, oxygen and water transmission rate as well as antimicrobial properties attained showed that the PEgI-DMAE produced the better dispersed PE, clay and silver nanocomposites. The obtained nanocomposites showed enhanced barrier properties and outstanding antimicrobial properties against bacteria, E. coli. PEgI-DMAE offers an outstanding capability for preparing nanocomposites with highly exfoliated and dispersed filler into the PE matrix that offers a new option for obtaining hybrid nanocomposites with enhanced properties to be used in packaging applications.  相似文献   

17.
Morphology assessment plays an important role as the ultimate properties of the processed nanocomposites mainly depend upon the morphology. This study focuses on the evaluation of polypropylene/clay nanocomposite structure using rheological and transmission electron microscopic investigation. Melt processing of nanocomposite was carried out on a co‐rotating twin screw extruder. Maleic anhydride grafted polypropylene (PP‐g‐MA) was used as a compatibilizer to facilitate better mixing of clay in polypropylene. The effect of compatibilizer to clay ratio on dispersion was analyzed through rheological data. An increase in complex viscosity and storage modulus with increase in compatibilizer content is observed at lower frequency region. Shifting of crossover frequencies to a lower value also indicate better exfoliation. Improved exfoliated morphology was also corroborated by Cole–Cole and inverse loss tangent plots. Transmission electron microscopy (TEM) micrograph based unique statistical image analysis was carried out using ImageJ software. A compatibilizer to clay content of 2 : 1 was found to be the optimum composition which was further supported by dielectric and mechanical properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4464–4473, 2013  相似文献   

18.
Polypropylene (PP)/clay nanocomposites are prepared using different grades of PP, compatibilizers, and organically modified clays. The melt intercalation of the PP is carried out in presence of a compatibilizer. The nanocomposites are characterized using various techniques for the structure and properties. X‐ray diffraction results indicate well‐defined structures. Thermogravimetric analysis indicates improved thermal stability of PP/clay nanocomposites. Isothermal crystallization studies carried out using differential scanning calorimeter illustrate enhanced crystallization of PP in all the nanocomposites. Optical microscopic study demonstrates that the nanocomposites can be crystallized at higher temperatures, exhibiting well‐defined birefringent structures. The dynamic mechanical analysis reveals higher storage moduli over a temperature range of ?400C to 1200C for nanocomposites, and the extent of increase in the storage modulus is dependent on the type of compatibilizer used.  相似文献   

19.
Polyethylene‐based ternary nanocomposites were prepared with different clay structures, obtained by the modification of purified Resadiye bentonite as the reinforcement, a random terpolymer of ethylene, butyl acrylate, and maleic anhydride with the trade name Lotader3210 as the compatibilizer, and linear low‐density polyethylene (LLDPE) as the polymer matrix in an intensive batch mixer. The quaternary ammonium/phosphonium salts used for the modification of bentonite were dimethyldioctadecyl ammonium (DMDA) chloride (Cl), tetrakisdecyl ammonium (TKA) bromide (Br), and tributylhexadecyl phosphonium (TBHP) Br. The effects of the physical properties and structure of the organoclay on the clay dispersion were studied at different clay contents (2 and 5 wt %) and at a compatibilizer/organoclay ratio of 2.5. The extent of organoclay dispersion was determined by X‐ray diffraction (XRD) and was verified by transmission electron microscopy (TEM), mechanical testing, and rheological analysis. XRD analysis showed that the nanocomposite with the organoclay DMDA contained intercalated silicate layers, as also verified by TEM. The TEM analysis of the nanocomposites with TBHP exhibited intercalated/partially exfoliated clay dispersion. TKA, with a crowded alkyl environment, sheltered and hindered the intercalation of polymer chains through the silicate layers. In comparison to pure LLDPE, nanocomposites with a 33–41% higher Young's modulus, 16–9% higher tensile strength, and 75–144% higher elongation at break were produced with DMDA and TBHP, respectively (at 5 wt % organoclay). The storage modulus increased by 807–1393%, and the dynamic viscosity increased by 196–339% with respect to pure LLDPE at low frequencies for the samples with DMDA and TBHP (at 5 wt % organoclay). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
The effect of compatibilizers on the blending torque, crystallization behavior, intercalation level, thermal stability and morphology of EVOH/treated clay systems was investigated. Maleic anhydride‐grafted ethylene vinyl acetate (EVA‐g‐MA) or maleic anhydride‐grafted linear low density polyethylene (LLDPE‐g‐MA) were used as compatibilizers of EVOH with clay, in various concentrations (1, 5 and 10 wt%). The blends were processed using Brabender Plastograph and characterized by XRD, SEM, DSC, DMTA and TGA. X‐ray diffraction shows advanced intercalation within the galleries when the compatibilizers were added. Unique results were obtained for the EVOH/clay/compatibilizer systems, owing to a high level of interaction developed in these systems, which plays a major role. Thermal analysis showed that with increasing compatibilizer content, lower crystallinity levels result, until at a certain content no crystallization has taken place. Significantly higher viscosity levels were obtained for the EVOH/clay blends compared to the neat polymer, as seen by a dramatic torque increase when processed in the Brabender machine. The DMTA spectra showed lower Tg values for the compatibilized nanocomposites compared to the neat EVOH and the uncompatibilized composites. Storage modulus was higher compared to the uncompatibilized EVOH/clay blend when EVA‐g‐MA compatibilizer was added (at all concentrations), and only at low contents of LLDPE‐g‐MA. TGA results show significant improvement of the blends thermal stability compared to the neat EVOH, and to the uncompatibilized blend, indicating an advanced intercalation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号