首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对传统高速列车3 mm厚A6N01S-T5铝合金型材典型接头结构开展激光-MIG复合焊接试验,优化复合焊接工艺参数,分析接头组织性能,研究激光-MIG复合焊的工程适应性。结果表明,在最佳工艺参数下,焊缝成形良好、无气孔缺陷。焊缝中心为树枝状铸态组织,靠近熔合线焊缝为柱状晶组织,熔合区较窄但热影响区存在晶粒轻微粗大现象;焊缝区硬度低于母材区,硬度最小值位于熔合线附近的热影响区;最佳工艺参数下接头的平均抗拉强度为204.6 MPa,达到母材的83.5%;断裂发生在熔合线附近,断口形貌呈现典型的塑性断裂特征;接头的弯曲性能良好;组对间隙小于1.0 mm时,最佳工艺参数具有通用性,焊缝成形及接头抗拉强度良好;组对间隙增至1.5 mm时,优化工艺参数焊缝成形及接头抗拉强度依然良好。结果表明,激光-MIG复合焊对高速列车铝合金车体典型接头具有良好的焊接可行性和工程适应性。  相似文献   

2.
使用5kW光纤激光焊和MIG焊复合,对3 mm厚316L不锈钢试板进行对接焊,研究不同间隙情况下焊缝的宏观形貌、微观组织和显微硬度。结果表明,焊缝余高和焊缝宽度随接头间隙的增大而减小。对接间隙小于板厚的25%时,焊缝成形好且组织均匀致密。对接间隙的变化对焊缝显微硬度影响不大,但由于陶瓷衬垫中部分杂质参与熔池反应,在对接间隙为板厚的20%的接头中,焊缝顶部和焊缝底部的显微硬度有所差别。焊缝顶部硬度为383.7 HV0.2,焊缝底部硬度为423.5 HV0.2。  相似文献   

3.
《焊接》2016,(10)
分别研究了激光自熔焊和激光填丝焊焊接工艺对2 mm厚430铁素体不锈钢钢带焊接的影响,分析了铁素体不锈钢激光焊的组织转变以及力学性能变化规律。结果表明,相对于激光自熔焊接,激光填丝焊焊接430铁素体不锈钢所获得的焊缝晶粒更细小、焊缝成形更均匀、饱满且焊缝无凹陷、咬边等缺陷,接头抗拉强度优于母材,熔合区硬度值分布更加均匀,最高可达320 HV左右,相对母材硬度值有显著提升。430铁素体不锈钢在0.1mm和0.3 mm对接间隙下进行激光填丝焊均获得成形良好且力学性能优良的焊接接头,从而可大大降低对焊接生产装配条件的要求。  相似文献   

4.
为获得高质量镀锌板焊接接头,采用激光扫描焊接方法对1.5 mm厚DP 780镀锌板进行搭接焊,研究激光功率、焊接速度对焊接接头的焊缝成形、显微组织及力学性能的影响。结果表明,激光功率和焊接速度分别在2.5~3.0 kW,25~55 mm/s区间内可获得全熔透焊缝;增大焊接功率,有利于消除焊缝表面咬边,但造成焊缝表面内凹现象严重;全熔透焊接时,增大焊接速度可减少焊缝内凹程度。焊缝中心主要由粗大的板条状马氏体组成,热影响区主要由马氏体和铁素体组成,降低焊接功率或增大焊接速度均可使马氏体组织含量减少及尺寸减小、铁素体含量增加。显微硬度试验表明焊接接头出现软化区,解释了接头拉伸性能在焊接速度55~75 mm/s范围内出现增大现象。焊接功率3.0 kW,焊接速度45 mm/s工艺参数组合最合适。  相似文献   

5.
《电焊机》2020,(7)
采用低功率激光诱导TIG电弧焊接技术,对15 mm和6 mm厚TC4钛合金板的角接结构焊接工艺进行研究。分析了焊接参数对不等厚板角接结构焊缝成形、焊接接头典型组织特征和显微硬度分布的影响机理。试验结果表明:在激光功率485 W、TIG电弧电流240 A、预留间隙0.3 mm时可获得最佳成形焊接接头;激光与电弧的匹配增大了焊接参数选择范围,可增强面对特殊结构的焊接适应性。钛合金不等厚板角接结构焊后接头呈非对称状,两侧组织存在差异,薄板侧晶粒长大明显,出现柱状晶区,TC4双相钛合金焊后组织中出现的网篮组织能提升焊缝强度。  相似文献   

6.
为了确保7层0.5 mm厚304L波纹管与法兰焊接质量,对其焊接工艺进行了研究,分析4种不同工艺条件下焊缝区成形、力学性能和显微组织的演变规律,进而确定最佳焊接工艺参数。结果表明:4种工艺条件均可获得外观成形良好的焊接接头,但是宏观断口分析表明,对7×0.5 mm波纹管焊接而言,2 mm间隙双层焊为最佳工艺方式,此时波纹管外壁距法兰内壁距离最小,熔深最大;对于缝焊+熔焊的组合焊接方法而言,缝焊区的硬度最高、熔焊区的硬度次之,这是因为缝焊区以细小等轴晶为主,而熔焊区则以粗大的柱状晶为主。  相似文献   

7.
针对6 mm厚的921A钢板,采用激光-MAG复合焊接工艺进行对接焊试验,并对焊接接头的显微组织、硬度、拉伸性能、耐腐蚀性能等进行了分析。结果表明,采用激光-MAG复合焊工艺可获得成形连续美观的焊接接头,无未熔合、裂纹、气孔等缺陷;焊缝组织为针状铁素体、少量沿晶界析出的先共析铁素体及长条状贝氏体,热影响区组织为马氏体;焊接接头的拉伸性能和冲击性能均符合国家标准要求,焊缝强度高于母材,但塑韧性低于母材。峰值硬度在热影响区,为315 HV,焊缝硬度约为280 HV,符合最高硬度不得超过410 HV的规定。焊缝耐电化学腐蚀性能最强,母材次之,热影响区最低;激光和MAG电弧2种热源共同作用区域的组织分布更加均匀,硬度及耐腐蚀性能较激光单独作用区域有了明显改善。 创新点: 采用激光-MAG复合焊实现了6 mm厚度921A钢板无缺陷对接焊的一次焊接成形。焊缝晶粒更加细化,分布更加均匀;焊缝抗拉强度、硬度、电化学腐蚀性能均高于母材,冲击吸收能量满足船级社要求。  相似文献   

8.
选取2.0 mm,1.5 mm厚的HSA340板材和0.7 mm厚的H340LAD Z板材,按强度相近厚度不同原则两两搭配进行激光拼焊.焊后选取具有代表性的焊缝横截面进行金相组织检验,并对焊缝接头各区域进行硬度测量,分析了激光焊缝接头各区域金相组织及其硬度的变化.结果表明,差厚板激光拼焊过程中,母材散热情况不同,会造成焊缝金相组织在各自靠近母材的局部区域有很大差异;激光拼焊板的热影响区宽度窄,与母材及焊缝间有明显的界线,生成的组织细密;焊缝及热影响区的硬度值均大于母材;合理调整激光光束的入射位置和入射角度,可以显著改善焊缝成形,提高拼焊板的接头质量.  相似文献   

9.
采用TIG焊与激光焊分别进行304不锈钢平板对接试验,通过万能试验机、显微硬度计、光学显微镜(OM)、扫描电镜(SEM)、X射线荧光衍射(XRD)等对比分析2种焊接工艺条件下焊接接头理化性能。结果表明:2种焊接工艺下304不锈钢焊接接头成形良好且无明显缺陷;激光焊焊缝面积、正反面熔宽更小; 2种焊接工艺的焊缝组织均为奥氏体和δ铁素体树枝晶组成,但激光焊树枝晶数量更多、尺寸更加细小;激光焊和TIG焊拉伸试样断裂位置均在焊缝区,但激光焊抗拉强度和伸长率更大,断口韧窝更细小均匀且更深,激光焊焊缝相较于TIG焊的塑韧性更好;激光焊接头的焊缝区显微硬度整体高于TIG焊接头焊缝区的显微硬度,由于晶界强化作用,2种焊接工艺的焊接接头显微硬度的最大值均出现在熔合区附近。  相似文献   

10.
采用激光-MIG复合焊工艺对中厚板6082铝合金进行焊接,焊接完成后,对焊缝进行了显微组织观察、硬度测试以及拉伸性能检测。结果表明,当激光功率为4.5 kW,焊接速度为1.2 m/min,离焦量为5 mm,送丝速度为8 m/min时,焊缝表面成形良好;焊缝熔合区显微组织均为等轴枝晶,晶粒较小,热影响区较窄,并且焊缝上部的组织相较于焊缝下部较为细小密集;焊接接头的热影响区硬度较母材和焊缝中心最高;焊缝的平均抗拉强度为251.9 MPa,接近于母材。  相似文献   

11.
研究了不同预热及缓冷条件下, 5 mm厚带衬底20CrMnTi+40Cr异种合金钢激光自熔焊对接接头的微观组织及性能。焊接工艺参数为:激光功率P=4 kW,焊接速度V_w=1.2 m/min,离焦量Δf=-5 mm,焊缝成形良好,焊缝无气孔、裂纹、未熔合等焊接缺陷。试验发现在不进行焊前预热而直接进行焊后缓冷的条件下,接头HAZ硬度过高,达到HV628。预热温度为160℃并进行焊后缓冷时仍无法有效降低接头硬度;在接头预热200℃并缓冷时, HAZ硬度降低到HV350~HV400,淬硬倾向已经得到改善。预热温度的提高延长了焊接接头的冷却时间,减少了过冷奥氏体向粒状贝氏体和针状马氏体的转变,使得接头组织大多为块状铁素体,从而降低了接头硬度,降低了接头的淬硬倾向。  相似文献   

12.
研究了激光功率和焊接速度对DX51D/JFE-HITEN780S不等厚钢结构钢板激光焊接接头成形质量、显微组织和硬度的影响。结果表明,激光功率在1.0 k W及以上时,焊接接头可焊透,且随着激光功率的增加,焊缝正面熔宽和背宽都呈现为逐渐增加的趋势;不同激光功率下的焊接接头焊缝区组织都为板条马氏体+铁素体,且随着激光功率的增加,板条马氏体愈发粗大,焊接接头焊缝硬度平均值呈现逐渐增加的趋势。焊接速度在1600~2400 mm/min时,焊接接头具有较好的焊接成形质量,随着焊接速度的增加,焊接接头焊缝处的正面熔宽和背面熔宽都呈现逐渐降低的特征,焊缝区板条马氏体含量逐渐减少,而铁素体含量逐渐增多,同时焊缝中心的晶粒有所细化;DX51D/JFE-HITEN780S异质钢板适宜的焊接激光功率为1.2 k W、焊接速度为2400 mm/min,此时焊接接头具有良好的焊接成形质量,焊缝区硬度较大且在热影响区中不存在软化点。  相似文献   

13.
利用硫酸-硫酸铜溶液对0.6mm厚304不锈钢Nd:YAG固体脉冲激光焊焊接接头耐腐蚀性能进行了试验研究,并与其TIG焊焊接接头及母材的耐腐蚀性能做了对比分析.结果表明,通过腐蚀前后显微组织发现母材没有晶间腐蚀现象,脉冲激光焊焊缝有轻微腐蚀,而TIG焊焊缝在晶界出现了较为明显的晶间腐蚀沟,腐蚀沟沿晶界有网状分布特征.通过腐蚀前后的显微硬度比较发现,脉冲激光焊焊缝最大硬度大于TIG焊焊缝,大于母材,TIG焊焊缝有部分低于母材的硬度区.提出了提高304不锈钢激光焊焊缝耐晶间腐蚀性能的方法和措施.  相似文献   

14.
ST14钢激光拼焊板焊缝组织及成形性能分析   总被引:5,自引:0,他引:5       下载免费PDF全文
对1.5mm和0.8mm两种规格的ST14钢等厚激光拼焊板焊缝部位进行杯突试验,比较焊缝与母材杯突值;再对由这两种规格组合拼焊的不等厚激光拼焊板进行单向拉伸试验,检验拼焊板经拉伸后的断裂部位;分析焊缝区组织及其硬度变化,研究激光焊接参数变化对ST14钢拼焊板成形性能的影响.结果表明,焊缝深冲性能低于母材,焊缝杯突值受焊接速度影响,随焊接速度增加而增加;激光焊缝抗拉强度高于母材;对于1.5 mm拼焊板,提高焊接速度,加快焊缝冷却,有利于生成细小的针状铁素体,可提高激光拼焊板的成形性能;而0.8 mm板焊缝生成晶粒细小的粒状贝氏体组织,可使焊缝区材料成形性能接近母材;焊缝及其热影响区的硬度高于母材硬度.  相似文献   

15.
研究了在1.2 mm/s焊接速度下,激光功率对304不锈钢薄板搭接接头组织和性能的影响。结果表明,焊缝区熔合线附近组织为树枝晶组织,焊缝中心为等轴晶,随着激光功率的提高,枝晶变长,枝晶间距变大,等轴晶区域减小,晶粒粗化。焊缝区的显微硬度随激光功率的提高而增大,高于母材硬度。不同激光功率条件下制备的接头强度不同,激光功率为5 kW时,接头的抗拉强度最优,略高于母材的强度。  相似文献   

16.
采用窄间隙光纤激光填丝多道焊的方法焊接了40 mm厚Q345D船用钢板,利用光学显微镜、扫描电镜和拉伸试验机分析了接头组织与性能。结果表明,选取合适的窄间隙激光填丝焊工艺可以得到成型好、无气孔和未熔合等缺陷的焊接接头,焊缝由13层构成,每层堆高约3 mm,焊缝宽度约为3.5 mm。填丝焊缝组织主要为铁素体和粒状贝氏体,焊缝中心冲击韧性良好。热影响区主要为马氏体组织,填丝焊的最高硬度值均出现在焊接热影响区,随着热输入的增加,热影响区最高硬度增加。拉伸试样均断于母材,焊接接头具有良好的力学性能。  相似文献   

17.
采用窄间隙激光填丝焊的方法并选取优化的焊接工艺参数焊接了高速列车转向架用16 mm厚的SMA490BW耐候钢,焊后通过拉伸、弯曲试验、显微硬度测试及微观组织观察,分析了窄间隙接头的组织与性能。试验结果表明:焊接接头成形良好,未见明显缺陷;填丝焊的焊缝中心组织由针状铁素体和少量粒状贝氏体组成,冲击韧性良好;热影响区主要有针状铁素体、粒状贝氏体及魏氏组织,接头的最高硬度值出现在焊接热影响区的细晶区。接头拉伸试样断于母材,试样弯曲180°未开裂,在-40℃进行冲击试验,冲击性能良好,因此焊接接头的力学性能良好。  相似文献   

18.
对3 mm厚的1Cr21Ni5Ti不锈钢锁底结构进行激光焊接试验,分析不同焊接工艺参数对接头成形、力学性能以及微观组织的影响,研究了其焊接工艺特性。结果表明,主要焊接缺陷为焊缝中的气孔以及收焊处凹坑,采用缓降功率的方法可减小焊缝收焊处凹坑深度,采用负离焦以及提高焊接速度有利于控制焊缝中的气孔缺陷。相比母材,焊缝硬度有所下降且不均匀,沿焊缝中心,焊缝中部区域硬度最高;在一定参数范围内,接头力学性能波动较小,焊缝平均抗拉强度达到816 MPa。焊缝内部晶粒呈等轴晶形式,主要由铁素体和奥氏体组成,焊缝中部奥氏体数量多于上部和下部,因此硬度较高;热影响区在焊接热循环作用下晶粒相对粗化,为焊缝的薄弱区域。  相似文献   

19.
为了探索光纤激光在焊接薄板低碳钢中的应用前景,文中采用光纤激光焊接系统分别对0.5 mm和1 mm厚Q235钢板进行了激光焊工艺试验,并对所得到的焊接接头的微观组织和力学性能进行了分析。通过调节激光功率、摆动频率等工艺参数,2种厚度的Q235钢板均可获得单面焊双面成形、无明显缺陷的焊接接头。厚0.5 mm板焊缝区主要由板条马氏体组成,硬度和抗拉强度均高于母材的,断后伸长率为33.1%,约为母材的79%;厚1 mm板焊缝区呈胞状树枝晶组织,主要由铁素体、珠光体和贝氏体组成,硬度和抗拉强度均高于母材的,断后伸长率为34.5%,约为母材的75%。  相似文献   

20.
采用光纤激光焊接工艺对4mm厚T6态GW103K稀土镁合金板进行焊接试验,通过改变激光功率、焊接速度、离焦量以及热输入研究了激光焊接工艺参数对焊缝成形以及焊接接头室温、高温力学性能的影响.结果 表明:在单道焊透的情况下,以上焊接工艺参数对焊缝成形均有影响,焊缝背面熔宽受到焊接工艺参数的影响最大.同时焊接热输入对焊接接头...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号