首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
该文提出一种可变结构的多谐振软开关直流变换器.此变换器采用双变压器结构,运用两个互补导通的辅助开关管进行变换器拓扑结构的转换.相互变换的工作模态有三种,能够满足不同工况对高电压增益或高变换效率的要求.此外,该文通过合理设置谐振频率和增益点的方式对变换器的谐振参数进行设计.随后,针对额定条件下变换器同时传递基波和3次谐波能量的工况,构建同时考虑基波和3次谐波的损耗模型,对变换器的损耗分布进行详细估算.最后,为验证理论分析的可靠性,基于一台实验样机对所述变换器进行功率实验验证,在输入电压80~600V变化范围内,输出电压始终稳定在400V,在获得较宽电压增益范围的同时实现了全增益范围内的高效率变换,变换器最高效率达97.6%.  相似文献   

2.
传统频率控制的LLC谐振变换器不适用于宽电压范围的应用场合,且存在较大的循环电流而难以实现高转换效率。为了解决这些问题,提出一种简单的定频PWM控制策略,谐振变换器的后桥臂通过固定的开关频率控制,开关频率等于谐振频率;前桥臂采用PWM控制,将谐振网络的输入电压转换成多电平电压,谐振变换器实现2倍的电压增益调节范围。在这种控制方式中,增益范围独立于负载和励磁电感,可以简化谐振参数设计,通过设计较大的励磁电感减小电路的传导损耗和开关关断损耗,提升转换效率。仿真结果表明:谐振变换器可以实现宽输出电压,该控制策略降低了循环电流和关断电流。最后,通过实验验证了所提控制策略的可行性。  相似文献   

3.
针对电动汽车车载充电器的后级DC-DC环节,提出一种具备宽输出范围的多电平LLC谐振变换器。该变换器通过增加一组半桥和辅助变压器,构造出高于输入电压的多电平结构,结合定频移相脉宽调制控制,实现两倍电压增益拓展。该方案避免了变频控制下增益范围对谐振参数的制约,简化了参数设计过程。工作于串联谐振点使变换器在整个充电工作过程中均可实现功率管的零电压开关和整流管的零电流开关,有利于系统效率的提升。搭建一台输入380V、功率3.3kW的实验样机,验证所提拓扑与控制方案的可行性。经测试,变换器能为动力电池提供250~420V的充电电压,其峰值效率达到了97.1%。  相似文献   

4.
随着直流配用电技术的发展,直流变压器技术开始备受关注,其效率和功率密度是目前主要的技术难题,为此需要从电力电子功率变换拓扑角度出发研究多工况、宽电压范围适用的高频、高效软开关拓扑。文中提出了一种可变结构多模式运行的隔离型多谐振直流变换器。该变换器采用辅助开关控制谐振腔,从而在不同应用场景下表现出自适应谐振特性。当系统输入电压较低时,采用双变压器多谐振拓扑结构,以获得较高的电压增益;而在额定状态下则采用五元件多谐振拓扑结构运行,实现高效率。得益于变结构多模式运行拓扑结构,该变换器具有较宽的电压增益范围,并能够始终保持较高的效率。这些特点使该变换器非常适合应用于直流配用电系统。文中在电路特性分析的基础上,制作样机并完成了实验验证。输入电压范围为80~600 V,输出电压为400 V,变换器峰值效率达到97.5%。  相似文献   

5.
针对直流变压器对效率和功率密度越来越高的发展需求,大功率谐振变换类拓扑被广泛关注,然而其分析方法特别是针对多谐振变换拓扑的分析方法目前有待进一步研究。文中提出了一种针对于双变压器谐振拓扑的等效建模及分析方法。基于该等效分析方法对CLTC变换器进行简化和增益特性分析,在此基础上,改进并优化获得了一种新型谐振式DC-DC变换器拓扑。该转换器保证高效率和软开关特性的同时进一步优化了变换器增益特性,具有在较窄的频率范围内实现更宽范围电压调节的能力。最后,建立了一台2.5 kW的样机对理论分析进行了验证,样机最高效率为97%。  相似文献   

6.
王镇道  张一鸣  李炳璋  吴旭 《电源技术》2017,(11):1633-1636
现代DC/DC变换器的发展趋势是高频率、高效率和高功率密度.基于电路拓扑结构,提出了全桥LLC谐振变换器的数学模型,推导了电压增益与负载的关系.基于最优转换效率和宽负载变化范围的转换关系,确定了谐振电路参数,并设计了一款全桥软开关LLC谐振变换器.仿真与实验结果表明,该设计从轻载到满载范围内效率均达到94%以上,开关频率提高到了兆赫兹级,功率密度达到2.4×107 W/m3,验证了模型的正确性.  相似文献   

7.
现代DC/DC变换器的发展趋势是高频率、高效率和高功率密度。基于电路拓扑结构,提出了全桥LLC谐振变换器的数学模型,推导了电压增益与负载的关系。基于最优转换效率和宽负载变化范围的转换关系,确定了谐振电路参数,并设计了一款全桥软开关LLC谐振变换器。仿真与实验结果表明,该设计从轻载到满载范围内效率均达到94%以上,开关频率提高到了兆赫兹级,功率密度达到2.4×107 W/m3,验证了模型的正确性。  相似文献   

8.
提出一种双变压器结构的多谐振型软开关直流变换器。通过在谐振腔内引入辅助高频变压器,变换器获得了包含谐振零点在内的多个谐振频率点。通过合理配置谐振点位置,变换器可在较宽频率范围内保证基波和3次谐波有功功率的同时传递,提高谐振电流利用率并起到抑制无功环流的作用。同时,谐振零点的引入使得变换器具备固有的限流保护能力。此外,变换器能够在全负载范围内实现开关管的零电压开通、二极管的零电流开通和准零电流关断,减小了开关损耗。最后,为了验证所提拓扑的有效性和参数设计方法的合理性,搭建一台额定功率330W的样机进行实验验证,最高效率可达到94.7%。  相似文献   

9.
提出一种输出并联型CLTCL多谐振软开关直流变换器拓扑,采用双变压器结构且高频变压器二次侧并联,谐振腔内包含多个电容、电感谐振元件。通过合理参数设计,变换器在额定工况下能够同时传递基波和3次谐波有功功率,提高谐振电流利用率,保证较高效率变换,在狭窄的频率范围内实现直流电压增益宽范围可调。功率开关管具有零电压开通(ZVS),二极管同时实现开通、关断过程的零电流软开关(ZCS)或近似零电流,开关损耗得到抑制。双高频变压器的漏感均被相应串联谐振电感吸收,参与谐振过程,寄生参数给电路带来的不利影响被成功削弱。本文基于一台500W的样机进行实验验证,结果表明变换器能够在较宽的负载范围内获得接近95%的较高效率,最高效率点为95.4%;在额定点附近20%的频率范围内实现电压增益从半额定值至额定值可调的有益效果。  相似文献   

10.
CLLC谐振变换器具有双向功率传输、自然软开关、宽范围电压输出等优势,但轻载运行时,存在输出电压失调和传输效率降低等问题。文章基于多谐波阻抗模型,对CLLC谐振变换器的多移相控制进行分析,设计适用于轻载运行的双移相控制,有效解决轻载输出电压失调问题,提升轻载功率传输效率。首先,建立CLLC变换器的多谐波阻抗模型,求解多移相控制下的轻载输出电压增益与谐振电流有效值;然后,分析不同移相角对输出电压值和谐振电流值的影响,并据此设计双移相控制,实现可靠的轻载电压增益调节,同时降低轻载运行的损耗;最后,搭建一台21.5V/400V,200W的全桥CLLC谐振变换器实验样机,实验结果证明所提多谐波阻抗模型的正确性和轻载运行下双移相控制的有效性。  相似文献   

11.
于广  申华  刘龙  王伟 《电源技术》2021,45(5):662-664,668
前级采用Boost+APFC电路,后级采用同步整流技术,以LLC串联谐振变换器为核心,进行了满足谐波要求高效率高功率密度90 W开关电源的设计.在对LLC谐振变换器组成结构与工作原理、零电压、零电流开关工作条件下的频率设定和频率调节输出电压及其增益特性分析的基础上,给出了LLC谐振变换器的具体过程,计算得到了谐振电容、串联电感和激磁电感的设计参数.样机以88~264 V宽电压输入可得到稳定的19.5 V电压输出.样机满载效率89%,功率因数0.95以上.  相似文献   

12.
针对LLC谐振变换器增益负载敏感性强、与效率存在强耦合的不足,提出了一种由LLC 谐振变换器和两开关buck-boost构成的宽增益高效率LLC谐振变换器拓扑。通过采用输入并联与输出串联的方式,分别由LLC谐振变换器传输功率、buck-boost调节输出电压。其中,LLC谐振变换器运行于谐振频率,buck-boost采用PWM调节输出电压。分析了变换器的运行模式,给出了相应的参数设计方法,并进行了仿真验证。最后,对输入30 V、输出200~360 V、360 W样机进行了实验,实验样机增益范围和效率分别为6.67~12、97.4%。仿真与样机实验验证了所提出的宽增益高效率LLC变换器拓扑及其调制方法的有效性。  相似文献   

13.
针对新能源发电系统输出电压低、电压稳定性差等问题,提出一种非隔离型低输入电流纹波高增益软开关直流变换器。该变换器结合有源钳位技术和耦合电感与二极管-电容倍压结构,提高了变换器的电压增益,降低了开关器件的电压应力。耦合电感自身漏感有效缓解二极管反向恢复问题,并通过有源钳位网络回收利用了漏感的能量,开关管无关断电压尖峰。利用耦合电感漏感,所有开关管均实现了零电压软开关,提高了变换器的效率。详细分析了变换器的拓扑结构与工作原理,并对电压增益、器件电压电流应力、软开关等电路性能进行了分析。最后,搭建了一台40 V输入、400 V输出、额定功率为160 W的试验样机,实验验证了该变换器具有低输入电流纹波、高电压增益、高变换效率和低电压应力等优点。  相似文献   

14.
提出一种Flyback变换器与Boost变换器相结合的非隔离型高增益直流变换器。该变换器中的Flyback变换器变压器原边电感和Boost变换器电感共用,Flyback变换器的开关管和Boost变换器开关管共用,Flyback变换器的输出和Boost变换器的输出串联,变压器漏感能量能够回馈到Boost变换器的输出,从而获得高增益高效率特性。电路具有结构简单、开关器件电压应力减少的优点。详细分析了拓扑工作原理、电压增益与效率特性。制作了一台100kHz开关频率/80W负载/24V输入/200V输出的实验样机,样机在轻载下可达到91.6%的效率,实验波形验证了理论分析的正确性。  相似文献   

15.
针对新能源领域对开关变换器具有宽电压增益范围的要求,提出一种多模式变频宽输出LLC变换器。该变换器原边为全桥结构,副边整流器为两级倍压结构,通过控制副边开关管的导通与截止,具有3种不同的电路模式,其增益比为1∶2∶4。各种模式对应不同的输出电压等级,采用变频控制方式,变换器可以实现50~430 V的宽输出电压范围。多种模式切换,使得变换器具有较窄的开关频率范围(65~100 k Hz)。通过合理的参数设计,变换器可以实现原边开关管零电压开通(ZVS)和副边二极管零电流关断(ZCS)。新的电路拓扑结构降低了副边二极管和副边电容的电压应力,仅为输出电压的一半。在理论和仿真分析基础上,制作了1.3 kW的实验样机。实验结果表明,该变换器可以在保证效率的同时实现宽输出电压范围,适合应用于宽输出场合。  相似文献   

16.
针对高功率密度的变换器开关频率正向兆赫兹频率移动,漏感的阻抗不断变大,若忽略变压器次级漏感,LLC谐振变换器会造成电压增益计算存在误差,影响转换效率。在此利用基波分析法(FHA)得到谐振腔的交流等效电路,为了保证高频LLC在软开关区(感性区域)工作,提出了将谐振腔的k-Q关系等式设计准则作为设计指导。此外,在谐振腔参数设计时,为了在输入电压范围内获得高的效率,提出了高频LLC谐振变换器保证高功率因数k的设计准则。最后,制作了一个240 W的LLC谐振变换器样机,在400 kHz的开关频率下进行了实验验证。验证了所提谐振腔设计准则的有效性。  相似文献   

17.
提出一种高效率高增益的谐振型直流功率变换器。该电路利用耦合电感、开关电容电路及输出串联结构实现高电压增益。耦合电感中的漏感能量由输出端回收,利于提升效率,降低开关管的电压应力。同时借助漏感和开关电容谐振,次级二极管的零电流开关得以实现,从而减小反向恢复的影响。详细分析了高效率高增益谐振型直流功率变换器的工作原理,及连续导通模式下变换器的稳态性能,并借助一台35 V输入、200 V/0.75 A输出的实验样机验证了理论分析的正确性。  相似文献   

18.
提出一种谐振软开关耦合电感高增益DC-DC变换器,通过引入辅助网络,将Boost变换器的输出二极管替换为开关管,实现全部开关管的零电压导通(ZVS)和二极管的零电流关断(ZCS),并降低开关管的开关损耗,消除二极管的反向恢复问题。同时,变换器输出端为三个输出单元串联,提高变换器的电压增益,避免变换器工作于极限占空比,在实现高升压增益的同时降低开关管电压应力。因此可选取低电压等级、低导通电阻的MOSFET,以提高变换器效率。倍压电容与耦合电感的漏感谐振,可减小开关管关断时刻电流,降低开关损耗,进一步提高变换器效率。研究变换器的工作原理和工作特性,分析开关管ZVS条件。设计制作一台160W的实验样机,实验结果验证了理论分析的正确性。  相似文献   

19.
针对能源互联网和电动汽车等所需储能系统,提出一种具有宽输入和宽输出电压范围的双向谐振变换器。该变换器是在双向LLC谐振变换器拓扑结构的基础上,通过在二次侧加入辅助开关构成。变换器采用定频控制方式,利用一次侧全桥-半桥之间的切换配合二次侧辅助开关的脉宽调制(pulse width modulation, PWM),以实现宽增益变换,可以应用在电压增益有4倍变化的场合。所提变换器在工作过程中功率器件均工作于软开关状态,有利于提高变换器效率,采用定频控制有利于变压器的设计。对变换器的正反向工作原理和调制策略进行了详细分析,最后搭建了一台最大功率为3kW的实验样机,实现了400V直流母线与105~420V的蓄电池组之间的双向功率变换,完成了系统实验。实验结果验证了该变换器可实现双向功率变换,并且具有宽电压增益和高效率。  相似文献   

20.
频率控制的传统LLC谐振变换器往往受限于开关频率的有效调节范围,难以实现宽输出电压范围,为此,研究了一种限制调频范围的不对称多模式宽输出LLC谐振变换器。采用双谐振腔且对应两变压器变比不同的不对称结构,能够根据原边开关组合的不同,使得双谐振腔分别工作在单半桥、双半桥和半桥+全桥3种不同的模式,从而获得3种不同的电压增益,并且保证每种模式之间归一化增益调节范围不超过1.5,可以在窄开关频率范围内实现宽输出电压范围。建立300 W的实验样机,验证了所提变换器可实现1~3倍的宽输出电压范围,并且实现了原边开关管的零电压开通和副边二极管的零电流关断,具有良好的软开关性能,验证了变换器的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号