首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In hot and humid region, air-conditioning is increasingly used to attain thermal comfort. Air-conditioning is highly energy intensive and it is desirable to develop alternative low-energy means to achieve comfort. In a previous experimental investigation using a room equipped with radiant cooling panel, it was found that cooling water kept to 25 °C could be used to attain thermal comfort under some situations, while water at such temperature would not cause condensation of moisture from air on the panel. This paper reports results of a series of whole-year simulations using TRNSYS computer code on applications of radiant cooling to a room model that represents the actual experimental room. Admitting the inability of radiant cooling to accept latent load, chilled water at 10 °C was supplied to cooling coil to precool ventilation air while water cooled by cooling tower was used for radiant cooling in daytime application. For night-time, cooling water from cooling tower supplied for radiant cooling was found to be sufficient to achieve thermal comfort. Such applications are considered to be more amenable to residential houses.  相似文献   

2.
In applying radiant floor cooling, its control system must prevent the floor surface condensation in hot and humid weather conditions. With no additional dehumidification system, only the radiant floor cooling system prevents floor condensation. In this case, the effects of the control of the cooling system on the indoor conditions can be changed because of the thermal inertia of the systems. Also different types of control system can be composed according to the control methods, which can affect the construction cost in the design stage. Therefore, the control methods for the radiant cooling system with respect to floor surface condensation must be studied. Furthermore, because Korean people's lifestyle involves sitting on the floor, it is necessary to evaluate if a floor cooling system will influence the thermal comfort of the occupants. This study intends to clarify the control methods of the radiant floor cooling system and to analyze the control performance and applicability of each control method with regard to the floor surface condensation and comfort by computer simulations and experiments on the control methods of the radiant floor cooling system. The results of computer simulations and experiments show that water temperature control is better than water flow control with respect to temperature fluctuations in controlling room air temperature. To prevent floor surface condensation, the supply water temperature could be manipulated according to the dew point temperature in the most humid room, and in individual rooms, the water flow rate (on/off control) can be controlled. Also, the results of radiant cooling experiments show that the floor surface temperature remained above 21 °C, the temperature difference among surfaces remained below 6 °C, and the vertical air temperature difference remained below 1.9 °C, conforming well to comfort standards.  相似文献   

3.
This paper reports a full-scale experimental campaign and a computational fluid dynamics (CFD) study of a radiant cooling ceiling installed in a test room, under controlled conditions. This research aims to use the results obtained from the two studies to analyze the indoor thermal comfort using the predicted mean vote (PMV). During the whole experimental tests the indoor humidity was kept at a level where the condensation risk was minimized and no condensation was detected on the chilled surface of the ceiling. Detailed experimental measurements on the air temperature distribution, surface temperature and globe temperature were realized for different cases where the cooling ceiling temperature varied from 16.9 to 18.9 °C. The boundary conditions necessary for the CFD study were obtained from the experimental data measurements. The results of the simulations were first validated with the data from the experiments and then the air velocity fields were investigated. It was found that in the ankle/feet zone the air velocity could pass 0.2 m/s but for the rest of the zones it took values less than 0.1 m/s. The obtained experimental results for different chilled ceiling temperatures showed that with a cooling ceiling the vertical temperature gradient is less than 1 °C/m, which corresponds to the standard recommendations. A comparison between globe temperature and the indoor air temperature showed a maximum difference of 0.8 °C being noticed. This paper also presents the radiosity method that was used to calculate the mean radiant temperature for different positions along different axes. The method was based on the calculation of the view factors and on the surface temperatures obtained from the experiments. PMV plots showed that the thermal comfort is achieved and is uniformly distributed within the test room.  相似文献   

4.
A study was carried out to investigate the effect of heat-pipe air-handling coil on energy consumption in a central air-conditioning system with return air. Taking an office building as an example, the study shows that compared with conventional central air-conditioning system with return air, the heat-pipe air-conditioning system can save cooling and reheating energy. In the usual range of 22–26 °C indoor design temperature and 50% relative humidity, the RES (rate of energy saving) in this office building investigated is 23.5–25.7% for cooling load and 38.1–40.9% for total energy consumption. The RES of the heat-pipe air-conditioning system increases with the increase of indoor design temperature and the decrease of indoor relative humidity. The influence of indoor relative humidity on RES is much greater than the influence of the indoor design temperature. The study indicates that a central air-conditioning system can significantly reduce its energy consumption and improve both the indoor thermal comfort and air quality when a heat-pipe air-handling coil is employed in the air-conditioning process.  相似文献   

5.
Shanghai International Gymnastics Stadium is the selected object for site-measurement. The site-measurements have been carried out during summer, winter, and the transitional seasons. Their indoor thermal environments were controlled by continuous air-conditioning, intermittent air-conditioning and natural ventilation, respectively. The site-measurement includes outdoor environment (the weather conditions and peripheral hallway), indoor air temperature distribution (the occupant zone temperature, radial temperature near upper openings and the vertical temperature distributions, etc.), and the heat balance of air-conditioning system, etc. It is found that temperature stratification in winter with air-conditioning is most obvious. The maximum difference of vertical temperature is 15 °C in winter. The second largest one is 12 °C in summer, and less than 2 °C in the transitional season. The results of measurements indicate that it is different in the characteristics on energy saving of upper openings during the different seasons. With heat balance measurements, it is discovered that the roof load and ventilated and infiltrated load account for larger percentages in terms of cooling and heating load. In this paper, many discussions on the results of site measurements show some characteristics and regulations of indoor thermal environment in large space building.  相似文献   

6.
This field study was conducted during summer 2009 in Harbin, northeast of China in order to investigate human responses to the thermal conditions in naturally ventilated residential buildings in cold climate. We visited 257 families in six residential communities and collected 423 sets of physical data and subjective questionnaires. The neutral temperature is 23.7 °C, with the clothing insulation of 0.54 clo. The neutral temperature in Harbin is lower than neutral temperatures in warm climates by others, which is in accordance with the thermal adaptive model. 80% of the occupants can accept the air temperature range of 21.5-31.0 °C, which is wider than the summer comfort temperature limits by the adaptive model. The preferred temperature range fell between 24.0 °C and 28.0 °C. About 57.9% of the subjects voted “no change” with the humid range of 40% and 70%. 61.5% of the occupants voted “no change” with the air velocity within the range of 0.05-0.30 m/s. In summer, occupants preferred air velocity of lower than 0.25 m/s even at higher indoor temperature, which is different from the other field studies. The Harbin occupants in naturally ventilated dwellings can achieve thermal comfort by operable windows instead of running air-conditioners.  相似文献   

7.
The summer season in the state of Kuwait is long with a mean daily maximum temperature of 45 °C. Domestic air conditioning is generally deployed from the beginning of April to the end of October. This accounts for around 75% of Kuwaiti electrical power consumption. In terms of energy conservation, increasing the thermostat temperature by 1 °C could save about 10% of space cooling energy 1 and 2. However, knowledge of indoor domestic temperatures and thermal comfort sensations is important to aid future advice formulation and policy-making related to domestic energy consumption. A field study was therefore conducted during the summers of 2006 and 2007 to investigate the indoor climate and occupants' thermal comfort in 25 air-conditioned domestic buildings in Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait domestic residences, together with an analysis of domestic-occupant thermal comfort sensations. With respect to the latter, a total of 111 participants provided 111 sets of physical measurements together with subjective information via questionnaires that were used to collect the data. By using linear regression analysis of responses on the ASHRAE-seven-point thermal sensation scale, the neutral operative temperatures based on Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) were found to be 25.2 °C and 23.3 °C, respectively, in the summer season. Findings from this study provide information about the indoor domestic thermal environment in Kuwait, together with occupant thermal comfort sensations. This knowledge can contribute towards the development of future energy-related design codes for Kuwait.  相似文献   

8.
It is possible to evaluate the energy demand as well as the parameters related to indoor thermal comfort through building energy simulation tools. Since energy demand for heating and cooling is directly affected by the required level of thermal comfort, the investigation of the mutual relationship between thermal comfort and energy demand (and therefore operating costs) is of the foremost importance both to define the benchmarks for energy service contracts and to calibrate the energy labelling according to European Directive 2002/92/CE. The connection between indoor thermal comfort conditions and energy demand for both heating and cooling has been analyzed in this work with reference to a set of validation tests (office buildings) derived from a European draft standard. Once a range of required acceptable indoor operative temperatures had been fixed in accordance with Fanger's theory (e.g. −0.5 < PMV < −0.5), the effective hourly comfort conditions and the energy consumptions were estimated through dynamic simulations. The same approach was then used to quantify the energy demand when the range of acceptable indoor operative temperatures was fixed in accordance with de Dear's adaptive comfort theory.  相似文献   

9.
There is a dearth of thermal comfort studies in India. It is aimed to investigate into the aspects of thermal comfort in Hyderabad and to identify the neutral temperature in residential environments. This was achieved through a thermal comfort field study in naturally ventilated apartment buildings conducted during summer and monsoon involving over 100 subjects. A total of 3962 datasets were collected covering their thermal responses and the measurement of the thermal environment. The comfort band (voting within –1 and +1), based on the field study, was found to be 26–32.45°C, with the neutral temperature at 29.23°C. This is way above the indoor temperature standards specified in Indian Codes. It was found that the regression neutral temperature and the globe temperature recorded when voting neutral converged when mean thermal sensation of the subjects was close to 0. This happened during the period of moderate temperature when the adaptive measures were adequate. The indoor temperatures recorded in roof-exposed (top floor) flats were higher than the lower floors. The thermal sensation and preference votes of subjects living in top floors were always higher. Consequently, their acceptance vote was also lower. It was found that the subjects living in top floor flats had a higher neutral temperature when the available adaptive opportunities were sufficient. This was due to their continuous exposure to a higher thermal regime due to much higher solar exposure. This study calls for special adaptive measures for roof-exposed flats to achieve neutrality at higher temperature.  相似文献   

10.
Parametric studies of facade designs for naturally ventilated residential buildings in Singapore were carried out to optimize facade designs for better indoor thermal comfort and energy saving. Two criteria regarding indoor thermal comfort for naturally ventilated residential buildings are used in this study. To avoid the perception of thermal asymmetry, temperature difference between mean radiant temperature and indoor ambient air temperature should be less than 2 °C [F.A. Chrenko, Heated ceilings and comfort. J. Inst. Heat. Ventilating Eng. 20 (1953) 375–396; F.A. Chrenko, Heated ceilings and comfort. J. Inst. Heat. Ventilating Eng. 21 (1953) 145–154]. Thermal comfort regression model for naturally ventilated residential buildings in Singapore was used to evaluate various facade designs either. Facade design parameters: U-values, orientations, WWR (window to wall ratio) and shading device lengths are considered in the investigation. The building simulation results for a typical residential building in Singapore indicated that the U-value of facade materials for north and south orientations should be less than 2.5 W/m2 K and the U-value of facade materials for north and south orientations should be less than 2 W/m2 K. From the coupled simulation results, it was found that the optimum window to wall ratio is equal to 0.24. Optimum facade designs and thermal comfort indexes are summarized for naturally ventilated residential buildings in Singapore.  相似文献   

11.
The impact from using cool roof coatings on the cooling and heating loads and the indoor thermal comfort conditions of residential buildings for various climatic conditions is estimated. The energy cooling loads and peak cooling demands are estimated for different values of roof solar reflectance and roof U-value. The results show that increasing the roof solar reflectance reduces cooling loads by 18–93% and peak cooling demand in air-conditioned buildings by 11–27%. The indoor thermal comfort conditions were improved by decreasing the hours of discomfort by 9–100% and the maximum temperatures in non air-conditioned residential buildings by 1.2–3.3 °C. These reductions were found to be more important for poorly or non-insulated buildings. For the locations studied, the heating penalty (0.2–17 kWh/m2 year) was less important than the cooling load reduction (9–48 kWh/m2 year). The application of cool roof coatings is an effective, minimal cost and easy to use technique that contributes to the energy efficiency and the thermal comfort of buildings.  相似文献   

12.
In the ASHRAE comfort database [1], underpinning the North American naturally ventilated adaptive comfort standard [2], the mean indoor air velocity associated with 90% thermal acceptability was relatively low, rarely exceeding 0.3 m/s. Post hoc studies of this database showed that the main complaint related to air movement was a preference for ‘more air movement’ 3 and 4. These observations suggest the potential to shift thermal acceptability to even higher operative temperature values, if higher air speeds are available. If that were the case, would it be reasonable to expect temperature and air movement acceptability levels at 90%? This paper focuses on this question and combines thermal and air movement acceptability percentages in order to assess occupants. Two field experiments took place in naturally ventilated buildings located on Brazil’s North-East. The fundamental feature of this research design is the proximity of the indoor climate observations with corresponding comfort questionnaire responses from the occupants. Almost 90% thermal acceptability was found within the predictions of the ASHRAE adaptive comfort standard and yet occupants required ‘more air velocity’. Minimum air velocity values were found in order to achieve 90% of thermal and air movement acceptability. From 24 to 27 °C the minimum air velocity for thermal and air movement acceptability is 0.4 m/s; from 27 to 29 °C is 0.41–0.8 m/s, and from 29 to 31 °C is >0.81 m/s. These results highlight the necessity of combining thermal and air movement acceptability in order to assess occupants’ perception of their indoor thermal environment in hot humid climates.  相似文献   

13.
To explore the relationship between thermal history and indoor comfort, surveys and measurements were conducted in Seoul, Korea and Yokohama, Japan. Fifty-two subjects were recruited from university campuses in Seoul and Yokohama during the hot season in August 2002. To collect information regarding people's daily thermal history, background questions (a thermal diary) were completed by subjects during the 24 h prior to entering in a climate chamber. Subjects changed into uniform clothing ensembles and complete thermal diary questions just prior to entering the chamber which was pre-conditioned to 28 °C and 50% relative humidity. Subjects entered the chamber and completed a set of thermal comfort questions at 10-min intervals for 1 h. Thermal history, prior to the chamber experiment, influenced the thermal sensation in chamber. Though the physical conditions in the climate chamber were identical (28 °C, 50% rh), Yokohama subjects responded with cooler thermal sensations than Seoul subjects. These subjects experienced hotter weather conditions (than the Seoul subjects) and voted that they felt cooler than the Seoul subjects who experienced cooler temperatures prior to entering the chamber. It was also found that subjects who use air-conditioning at home responded with warmer thermal sensations than the subjects who did not use air-conditioning. These results indicate that there is a strong interaction and influence of our experience with outdoor weather and our indoor thermal comfort.  相似文献   

14.
The thermal environment for air-conditioned offices in subtropical climates is examined from the prospect of maintaining an optimum operative temperature for the occupants. In this study, the optimum neutral temperature is evaluated from 422 occupants’ responses towards the perceiving thermal environment in 61 air-conditioned offices and 186 complaints of thermal discomfort in an air-conditioned office building on an electronic questionnaire, using a semantic differential evaluation scale and a dichotomous assessment scale. In particular, physical parameters for the thermal comfort study were measured by an indoor environmental quality (IEQ) logger, and the operative temperature was correlated with the occupants’ thermal responses. The probability of accepting an operative temperature for the thermal comfort of the occupants was correlated with logistic regression curves; the optimum operative temperature was derived in order to maximize the probability of thermal comfort expressed by the occupants. The results showed that the thermal neutral temperatures for air-conditioned offices in subtropical climates were 23.6 and 21.4 °C in summer and winter, respectively. The preferred thermal environment in Hong Kong should be slightly cool, corresponding to about 1 °C below the neutral temperature, in order to satisfy most of the occupants in the office space.  相似文献   

15.
地板辐射与置换通风空调系统运行参数   总被引:1,自引:0,他引:1  
建立了基于EnergyPlus的地板辐射供冷加置换通风空调系统模型,模拟得到的室内温度和辐射地板所承担冷量与实验结果的误差小于±7%。在此模型基础上,改变送风参数和供水参数,得到置换通风供冷量、辐射地板供冷量、地板表面温度、室内空气平均温度、AUST温度等参数的变化规律。结合热舒适性模型,得到满足室内热舒适性(-0.5≤PMV≤0.5)条件下,置换通风的送风参数和辐射地板的供水参数范围,为复合系统设计和应用提供依据。  相似文献   

16.
王洪成  李汛 《煤气与热力》2006,26(11):60-63
探讨了地板辐射供暖、供冷系统与置换通风系统的组合空调系统的流程,对组合空调系统进行了数值模拟。地板辐射供暖、供冷系统与置换通风系统相结合获得了良好的室内温度场和速度场,提高了空气品质,改善了室内的热舒适性。  相似文献   

17.
It is difficult for a total air-conditioning system to satisfy the thermal comfort of all workers in an office. Therefore, an individually controlled system that can create a comfortable thermal environment for each worker is needed. In the present study, two chairs incorporating two fans each, one under the seat and one behind the backrest, were developed to provide isothermal forced airflow to the chair occupant. The chairs differed in the size of the fans. Experiments were conducted in a climate chamber during the summer. Seven subjects, who were healthy male college students, were allowed to freely control the two built-in fans by adjusting dials on the accompanying desk. The room air temperatures were set at 26 °C, 28 °C, 30 °C and 32 °C. The following findings were obtained. At a room air temperature of 28 °C, the whole-body thermal sensations were almost thermally neutral, regardless of the type of chair. At a room air temperature of 30 °C, the occupants were able to create acceptable thermal environments from the viewpoints of whole-body thermal sensation and comfort by using the chairs with fans. Their local discomfort rates at the back and lower back, which were affected by the isothermal airflows, were greatly improved at this room air temperature. However, at a room air temperature of 32 °C, the chairs tested in the present study were not able to provide acceptable thermal environments. In order to provide a more comfortable environment to the chair occupants, additional local systems to cool the head, arms, and hands are needed.  相似文献   

18.
Solar air-conditioning can have higher application potential for buildings through the strategy of high temperature cooling. In recent years, displacement ventilation (DV), which makes use of the indoor rising plumes from the internal heat gains, provides a more effective supply air option than the traditional mixing ventilation (MV) in terms of both thermal comfort and indoor air quality. As it is possible to raise the supply air temperature to 19 °C for DV, it would enhance the competitive edge of the solar air-conditioning against the conventional vapour compression refrigeration. Through dynamic simulation, a solar-desiccant-cooling displacement ventilation system (SDC_DV) was developed for full-fresh-air provision, while a solar-hybrid-desiccant-cooling displacement ventilation system (SHDC_DV) for return air arrangement. The latter was further hybridized with absorption chiller (AB) to become SHDCAB_DV, or adsorption chiller (AD) to be SHDCAD_DV, in order to be wholly energized by the solar thermal gain. Benchmarked with the conventional system using MV, the SDC_DV had 43.3% saving in year-round primary energy consumption for a typical office in the subtropical climate; the SHDCAB_DV had 49.5% saving, and the SHDCAD_DV had 18.3% saving. Compared with their MV counterparts, the SDC_DV, the SHDCAB_DV and the SHDCAD_DV could have 42.4%, 21.9% and 30.3% saving respectively.  相似文献   

19.
In this paper, a solar heating system, which combines the technologies of evacuated tube solar air collector and rotary desiccant humidification together, has been configured, tested and modeled. The system mainly includes 15 m2 solar air collectors and a desiccant air-conditioning unit. Two operation modes are designed, namely, direct solar heating mode and solar heating with desiccant humidification mode. Performance model of the system has been created in TRNSYS. The objective of this paper is to check the applicability of solar heating and evaluate the feasibility and potential of desiccant humidification for improving indoor thermal comfort. Experimental results show that the solar heating system can convert about 50% of the received solar radiation for space heating on a sunny day in winter and increases indoor temperature by about 10 °C. Compared with direct solar heating mode, solar heating with desiccant humidification can increase the fraction of the time within comfort region from about 10% to 20% for standalone solar heating and from about 30% to 60% for solar heating with auxiliary heater according to seasonal analysis. It is confirmed that solar heating with desiccant humidification is promising and worthwhile being applied to improving indoor thermal comfort in heating season.  相似文献   

20.
In the warm and humid climate zone, air-conditioning (AC) is usually provided at working places to enhance human thermal comfort and work productivity. From the building sustainability point of view, to achieve acceptable thermal sensation with the minimum use of energy can be desirable. A new AC design tactic is then to increase the air movement so that the summer temperature setting can be raised. A laboratory-based thermal comfort survey was conducted in Hong Kong with around 300 educated Chinese subjects. Their thermal sensation votes were gathered for a range of controlled thermal environment. The result analysis shows that, like in many other Asian cities, the thermal sensation of the Hong Kong people is sensitive to air temperature and speed, but not much to humidity. With bodily air speed at 0.1–0.2 m/s, clothing level 0.55 clo and metabolic rate 1 met, the neutral temperature was found around 25.4 °C for sedentary working environment. Then recommendations are given to the appropriate controlled AC environment in Hong Kong with higher airflow speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号