首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
5MgO–9BaO–33B2O3–33Al2O3–20SiO2 (mol%) glass was prepared by the melt quenching method at 1823 K for 2 h. Dilatometry and differential scanning calorimetry (DSC) curves of the glass have been investigated. Fragility index F was used to estimate glass formability. The crystallization kinetics of the glass was described by the activation energy (E) for crystallization and numerical factors (n, m) depending on the nucleation process and growth morphology. XRD and SEM analysis were also used to describe the crystals’ types and morphology precipitated from the MgO–BaO–B2O3–Al2O3–SiO2 glass. The results show that the effective activation energy of the crystallization process E was 45.19 kJ/mol, and n up to 4.05. Two crystals phases, i.e. Al4B2O9 and Al20B4O36 were observed in the crystallized samples. SEM results were consistent with crystallization kinetics.  相似文献   

2.
The nucleation and crystallization of MgO-B2O3-SiO2 (MBS) glass were studied by means of a non-isothermal, thermal analysis technique, X-ray diffraction and scanning electron microscopy. The temperature range of the nucleation and the temperature of the maximum nucleation rate for MBS glass were determined from the dependences of the inverse temperature at the DSC peak (1/Tp) and the maximum intensity of the exothermic DSC crystallization peak ((δT)p) on the nucleation temperature (Tn). For MBS glass the nucleation occurred at 600-750 °C, with the maximum nucleation rate at 700 °C, whereas the nucleation and crystal growth processes overlapped at 700 °C < T ≤ 750 °C. The analyses of the non-isothermal data for the bulk MBS glass using the most common models (Ozawa, Kissinger, modified Kissinger, Ozawa-Chen, etc.) revealed that the crystallization of Mg2B2O5 was three-dimensional bulk with a diffusion-controlled crystal growth rate, that n = m = 1.5 and that the activation energy for the crystallization was 410-440 kJ/mol.  相似文献   

3.
Glass compositions in the system 40SiO2–30BaO–20ZnO–(x)Mn2O3–(10 − x)B2O3 glasses have been synthesized and the thermal, structural and crystallization kinetic properties characterized. The lower concentration of Mn2O3 in place of B2O3 acts as a network former and suppressed the tendency of phase separation in glasses. On the other hand, concentration of Mn2O3 > 7.5 mol% induce phase separation in the glass matrix. The highest activation energy for crystallization is observed in the composition without B2O3 (INM4) (355 kJ/mol). The values of thermal expansion coefficient (TEC) and viscosity of this glass is 8 × 10−6 K−1 and 104.2dPa s (850 °C), respectively. After long heat treatment (800 °C for 100 h), thermodynamically stable hexacelsian and monoclinic phases are formed. These phases are not detrimental to SOFC application.  相似文献   

4.
A non-isothermal study of the crystallization kinetic of coprecipitation of Bi1.25Y1.75Fe5O12 was carried out by differential scanning calorimetry (DSC). The Avrami exponent n suggesting the dimensionality of crystal growth was determined using the Ozawa equation. From non-isothermal DSC data presented values in range of 775–1023 kJ/mol and 3.28–2.10 for the activation energy of crystallization and the Avrami exponent, respectively. These Avrami exponent values were consistent with surface and internal crystallizations growth simultaneously.  相似文献   

5.
《Ceramics International》2023,49(5):7424-7437
The current work presents and discusses the findings of a comprehensive study on the structural, chemical and thermal properties of SrO and CuO incorporated SiO2–CaO–Na2O–P2O5 amorphous silicate glass with a novel composition. Here, fundamental features (experimental density, oxygen density, and hardness) of all glasses were determined and chemical as well as phase composition of the glasses was verified with XRF and XRD, respectively. Moreover, the thermal behavior (viscos flow and crystallization kinetics) of amorphous silicate glass was investigated by non-isothermal methods using DTA analysis. The activation energies of glass transition (Eg) were calculated in the range of 546–1115 kJ/mol by Kissinger method, whereas the activation energies of crystallization (Ec) were calculated in the range of 164–270 kJ/mol by three different methods (Kissinger, Ozawa, Yinnon and Uhlmann). Avrami exponent (n) values ranged from 1.17 to 3.28 demonstrated that amorphous silicate glasses have different crystallization mechanism. Working temperature, which is one of the parameters indicating glass stability, increased with the incorporation of Sr and Cu from 187 °C to 245 °C. The initial dissolution measurement has been applied to study the degradability behavior of Sr and Cu incorporated amorphous glasses in vitro. Quantitative evaluation of Si4+ (0.156–0.373 kV), Ca2+ (0.043–0.332 kV), Na+ (0.044–0.329 kV), P5+ (0.057–0.289 kV), Sr2+ (0.134–0.385 kV), and Cu2+ (0.090–0.203 kV) depending on the ion activation energy (Ea-ion) and ion concentration at different temperature values (24, 37 and 55 °C) was performed in contact with Tris-HCl solution by ICP-OES analysis. The results revealed that investigated glasses were degradable and incorporation of Sr and Cu affected the glass initial dissolution. Overall, investigated glasses are suitable for various application such as hot-working production, glass-ceramic manufacturing, and glass or glass-ceramic scaffolds fabrication, due to wide working temperature ranges and high crystallization tendencies of the developed glasses.  相似文献   

6.
Although glass–ceramics have been widely explored for their thermal stability and mechanical properties, they also offer unique symmetry-dependent properties such as piezoelectricity and pyroelectricity through controlled crystallization of a polar phase. This work examines crystallization of LiNbO3 in a 35SiO2–30Nb2O5–35Li2O mol% composition and crystallization of LiNbO3 and NaNbO3 in a 35SiO2–30Nb2O5–25Li2O–10Na2O mol% composition. Crystallization kinetics are examined using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory where the Avrami exponent, n, is calculated to be 1.0–1.5. Microscopical analysis shows dendritic morphology, which when combined with the JMAK analysis, suggests diffusion-controlled one-dimensional growth. Adding Na2O to the glass composition increases the inter-diffusivity of ions which causes LiNbO3 to crystallize faster and lowers the activation energy of transformation from 1054 ± 217 kJ/mol in the ternary composition to 882 ± 212 kJ/mol. Time-temperature-transformation diagrams are presented which show that the temperature for maximum rate of transformation for LiNbO3 is ∼650°C and for NaNbO3 is ∼715°C.  相似文献   

7.
The data of dilatometry and electron microscopy of four series of xNa2O-(8 ? x)K2O-32B2O3-60SiO2, xNa2O-(8 ? x)K2O-22B2O3-70SiO2, xNa2O-(6 ? x)K2O-34B2O3-60SiO2, and xNa2O-xK2O-(40 ? 2x)B2O3-60SiO2 phase-separated glass heat-treated at 550°C for 144 h (for glass containing 70 mol % SiO2) and 24 h (for glass containing 60 mol % SiO2) for separation on phases are summarized. The comparison of dilatometric data and electron microscopy allow one to conclude that glass with a difference between the onset deformation temperature and a glass transition temperature of more than 100°C is phase-separated; and glass with a difference of less than 65°C is single-phase. Curves for the glass transition temperature as a function of the K2O content reveal a mixed alkali effect, namely, minimums for glass containing 60% SiO2, and maximums for glass containing 70% SiO2.  相似文献   

8.
The crystallization ability plays a key role in effecting thermal ability of sealing glass for intermediate temperature-solid oxide fuel cells (IT-SOFCs) to prevent fuel leakage during operation and insulate the cell stack from the external atmosphere. Herein, using differential thermal analysis (DTA) techniques, the growth mode of crystals precipitated in BaO-CaO-Al2O3-B2O3-SiO2 (BCABS) sealing glass through the heat treatment was calculated in terms of non-isothermal crystallization kinetics for the first time. The calculated results showed that the average kinetic exponent n of the glass was approximatively 1, indicating that the crystal nucleuses became to form and further grew with one-dimensional mode from the surface inwards. Scanning electron microscope (SEM) observations clearly revealed that a large number of one-dimensional filamentous crystals have been formed on the interface between the sealing glass and the electrolyte after the heat treatment at 973?K for 100?h, which perfectly coincided with the theoretical calculations, and the glass was well combined with the electrolyte without any visible cracks or peeling at the interface. The one-dimensional growth of hexagonal BaAl2Si2O8 crystals verified by X-ray diffraction (XRD) could effectively decelerate the decrease of thermal expansion coefficient of glass to ensure enhance the thermo-stability of the BCABS sealing glass for IT-SOFC.  相似文献   

9.
The crystallization kinetics and dielectric properties of a low‐dielectric, low‐temperature, cofirable ceramic system comprised of CaO–Al2O3–SiO2 (CAS) glass and alumina have been investigated. Crystalline phases including pseudowollastonite (CaSiO3), anorthite (CaAl2Si2O8) and cristobalite (SiO2) are formed during firing the pure CAS glass. The crystallization kinetics of both pseudowollastonite and cristobalite exhibit Avrami‐like behavior, and the results show apparent activation energies close to that of diffusion of alkali ions in the glass. With added alumina content greater than a critical value, the above crystalline phases are completely suppressed but more anorthite is formed. This result is attributed to the rapid dissolution kinetics of alumina into the CAS glass. As the degree of crystallization increases with firing time, the dielectric loss of the composite decreases significantly, however, with dielectric constant remaining relatively unchanged.  相似文献   

10.
We report Eu3+ doped transparent glass-ceramics (GCs) containing bismuth layer-structured ferroelectric (BLSF) CaBi2Ta2O9 (CBT) as the major crystal phase. The CBT crystal phase was generated in a silica rich glass matrix of SiO2-K2O-CaO-Bi2O3-Ta2O5 glass system synthesized by melt quenching technique followed by controlled crystallization through ceramming heat-treatment. Non-isothermal DSC study was conducted to analyze crystallization kinetics of the glass in order to understand the crystallization mechanism. The optimum heat-treatment protocol for ceramization of precursor glass that has been determined through crystallization kinetics analysis was employed to fabricate transparent GCs containing CBT nanocrystals, which was otherwise difficult. Structural analysis of the GCs was carried out using XRD, TEM, FESEM and Raman spectroscopy and results confirmed the existence of CBT nanocrystals. The transmittance and optical band gap energies of the GCs were found to be less when compared to the precursor glass. The refractive indices of the GCs were increased monotonically with increase in heat-treatment time, signaling densification of samples upon heat-treatment. The dielectric constants (εr) of the GCs were progressively increased with increase in heat-treatment duration indicating evolution of ferroelectric CBT crystals phase upon heat-treatment.  相似文献   

11.
Photostructurable Li2O-Al2O3-SiO2 glass is a promising material to fabricate complex three-dimensional structure with a high aspect ratio. However, its high dielectric loss at high frequencies has restrained its application in the field of integrated circuits packaging. In this research, La2O3, which has a large ionic radius, as well as strong polarization and bonding strength, was used to obstruct mobile ion migration to reduce the dielectric loss. The results indicated that moderate doping with La2O3 could effectively reduce the dielectric loss. When the dopant amount was 3%, the dielectric loss was successfully reduced to a minimum of 4?×?10?3 with a dielectric constant of 6.6 at 1?GHz, and this sample also possessed the optimal dielectric-temperature stability. Additionally, the effects of doping on the photosensitivity and crystallization behavior were also analysed. The results suggested that La2O3 doping did not affect the photosensitivity and selective crystallization characteristics. However, La2O3 restrained the precipitation of silicate from the [SiO4] tetrahedron, resulting in a decrease of nucleation rate and a delay of crystallization.  相似文献   

12.
The kinetics of nonisothermal crystallization of polypropylene (PP) containing nanoparticles of silicon dioxide (SiO2) were investigated by differential scanning calorimetry (DSC) at various cooling rates. Several different analysis methods were used to describe the process of nonisothermal crystallization. The results showed that the Ozawa equation and Mo's treatment could describe the nonisothermal crystallization of the composites very well. The nano‐SiO2 particles have a remarkable heterogeneous nucleation effect in the PP matrix. The rate of crystallization of PP/nano‐SiO2 is higher than that of pure PP. By using a method proposed by Kissinger, activation energies have been evaluated to be 262.1, 226.5, 249.5, and 250.1 kJ/mol for nonisothermal crystallization of pure PP and PP/nano‐SiO2 composites with various SiO2 loadings of 1, 3, and 5%, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1013–1019, 2004  相似文献   

13.
Diopside is the main crystalline phase in silicate materials such as ceramics and glass-ceramics. Herein, the effect of Cr2O3 on the microstructure and crystallization behavior of synthetic diopside, as well as the solubility of Cr2O3 in diopside is discussed. Samples were prepared by the melting method and characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry, and confocal laser scanning microscopy. Results show that the maximum achievable solubility of Cr2O3 in diopside is between 1% and 3% by weight, and that the magnesiachrome spinel formed by Cr2O3 can act as a nucleating agent for the diopside phase. Glass ceramics was prepared by synthesis slag which simulates the chromium-containing waste. The activation energy of crystallization is 274 KJ/mol and Avrami parameter is 3.23. The leaching behavior of glass ceramics was studied. Additionally, the effect of Cr2O3 on the mechanisms of phase change were discussed. The study provides a theoretical basis for the preparation of chromium containing waste-based silicate materials with diopside as the main crystalline phase.  相似文献   

14.
The crystallization kinetics in the glass system (100− x )LiBO2− x Nb2O5 (5≤ x ≤20, in molar ratio) prepared via the conventional metal-plate quenching technique have been studied by isothermal and non-isothermal methods using differential thermal analyses. X-ray powder diffraction studies carried out on heat-treated (500°C) glasses reveal the evolution of lithium niobate crystalline phase along with a minor phase of LiBO2. The exponent n in the Jhonson–Mehl–Avrami (JMA) equation applied to the isothermal process is 2.62, which is in excellent agreement with that obtained under the non-isothermal process (2.67). The activation energies for crystal growth obtained from JMA equation under isothermal condition, modified Ozawa and Kissinger equations under non-isothermal conditions, are 293, 311, and 306 kJ/mol, respectively.  相似文献   

15.
Influence of various intermediate oxides on thermal, structural and crystallization kinetics of 30BaO–40SiO2–20B2O3–10A2O3 (A = Y, La, Al, Cr) glasses has been studied. The highest glass transition temperature (Tg) with high thermal stability is observed in Y2O3 containing glasses as compared to other glasses. The thermal expansion coefficient (TEC) increases with increasing heat treatment duration in all the glasses. The maximum increase in TEC is observed in Cr2O3 containing glass ceramics. FTIR study showed that transmission bands due to silicate and borate chains become sharper with splitting after heat treatment. A selected glass sample (BaCr) has been tested for interaction and adhesion with Crofer 22 APU interconnect material for its application as a sealant in solid oxide fuel cell.  相似文献   

16.
Germanium-mullite (3Al2O3·2GeO2) is formed directly as a single phase at lower temperatures from amorphous material with 50–66.7 mole% Al2O3 prepared by the alkoxy-method. The kinetic data of the 3Al2O3·GeO2 crystallization with 50 and 60 mole% Al2O3 are represented by different solid-state equations. The difference of the crystallization mechanism is possibly explained in terms of the morphology of the 3Al2O3·GeO2 particles.  相似文献   

17.
The crystallization behavior of a CaO-SiO2-MgO-Al2O3 slag system with varying Al2O3/SiO2 mass ratios from 0.03 to 1.10 has been investigated using a confocal laser scanning microscopy (CLSM). The resulting continuous cooling transformation (CCT) and time-temperature-transformation (TTT) curves showed that the initial crystallization temperature increased and the incubation time for crystallization slightly decreased with increasing Al2O3/SiO2 ratio. The crystal growth rate first increased and then decreased with decreasing isothermal temperature. X-ray diffraction (XRD) analysis suggested that Ca2MgSi2O7 or Ca3MgSi2O8 precipitated as the primary phase at lower Al2O3/SiO2 ratios, while the Ca2Al2SiO7 phase was preferred at higher Al2O3/SiO2 ratios. The observed crystalline phases correlated well with the expected thermodynamic predictions from FactSage. In addition, structural analysis using 27Al magic angle spinning nuclear magnetic resonance (27Al MAS-NMR) microscopy of the as-quenched slags indicated the presence of a higher ratio of tetrahedral [AlO4]5-structural units with increasing Al2O3/SiO2 ratio, which enhanced the polymerization of tetrahedral [AlO4]5- and [SiO4]4- structural units to form Ca2Al2SiO7.  相似文献   

18.
One glass formulation (L2 glass) with the composition of La2O3, Al2O3 and B2O3 in a molar ratio of 10:10:80 was selected to cofire with Al2O3 filler. The composites underwent a two-stage crystalline evolution in the temperature range of 800 to 975 °C. The crystallization kinetics of LaBO3 grains and the transformation to LaAl2B3O9 phase were investigated by DTA, XRD, SEM/EDS, and TEM. The results showed that the Al2O3 filler plays an important role as the heterogeneous sites of LaBO3 nuclei, and as reactant for the formation of flaky LaAl2B3O9 crystals. The apparent activation energy of LaBO3-phase formation in L2 glass was 534 kJ/mol and reduced to 466 kJ/mol by the addition of Al2O3. The detail transformation reactions, kinetics, and the crystalline orientation relationship between those phases are reported.  相似文献   

19.
The effect of various nuclei on crystallization mechanism of SiO2–Al2O3–CaO–MgO(R2O) glasses were investigated by differential thermal analysis (DTA) through Matusita, Marotta and modified Kissinger methods. The Avrami constant, n, and the activation energy for crystallization of the most promising specimens containing Cr2O3, Fe2O3 and TiO2 in the single, double and triple nuclei series were determined. According to the results the Avrami constants derived from the Marotta method were more consistent with the other experimental observation. While glasses containing TiO2 as the single nucleant represents surface crystallization and those containing Cr2O3 or Fe2O3 one-dimensional bulk crystallization, the crystallization mechanism of specimens containing both Cr2O3 and Fe2O3 and also the glasses containing the triple nuclei, are bulk and two dimensional.  相似文献   

20.
We report on the formation of Bi2ZnB2O7 crystal structures with designated patterns in ZnO–Bi2O3–B2O3 glass by femtosecond laser direct writing. The crystallization mechanism in glass is investigated by crystallization kinetics analysis and simulation of the three‐dimensional temperature field distribution. The crystallized regions show larger third‐order optical nonlinearity than the unirradiated region in glass by Z‐scan technique. This finding is of great potential in application of nonlinear optical integrated devices and development of new nonlinear materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号