首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
董君  叶春明 《控制与决策》2021,36(11):2599-2608
针对加工时间不确定的可重入混合流水车间调度与预维护协同优化问题,构建以区间最大完工时间、区间总碳排放和区间总预维护费用为优化目标的集成调度模型.针对问题特性,通过设计改进的可能度计算方法,定义区间意义下解的Pareto占优关系.提出一种改进的离散鲸鱼群算法,通过同步调度与维护策略,实现制造与维护的联合优化;设计个体间距离计算策略,寻找“最近较优个体”;设计个体位置移动策略以及多邻域搜索策略,有效地平衡全局搜索和局部搜索,提高收敛精度.通过大量的仿真实验和结果对比分析,表明了所提出的算法对于求解区间数可重入混合流水车间调度和预维护协同优化问题的有效性和可行性.  相似文献   

2.
吴青松  杨宏兵  方佳 《计算机应用》2017,37(11):3330-3334
为了解决生产车间中多品种任务的生产调度与预防性维护集成优化问题,综合考虑其加工顺序、生产批量及预防性维护策略等要素,在订单充足的前提下,以总制造成本和加工时间最小化为联合优化目标,建立了生产调度与预防性维护集成优化模型。针对模型特点,在非支配排序遗传算法框架的基础上,基于灾变机制和荣誉空间,引入截断和拼接操作算子,提出一种变长度染色体单亲遗传算法对模型进行求解,并在不同参数条件和问题规模下,通过仿真实验验证了该算法解决复杂生产任务调度和预防性维护集成优化问题的有效性。  相似文献   

3.
The introduction of modern technologies in manufacturing is contributing to the emergence of smart (and data-driven) manufacturing systems, known as Industry 4.0. The benefits of adopting such technologies can be fully utilized by presenting optimization models in every step of the decision-making process. This includes the optimization of maintenance plans and production schedules, which are two essential aspects of any manufacturing process. In this paper, we consider the real-time joint optimization of maintenance planning and production scheduling in smart manufacturing systems. We have considered a flexible job shop production layout and addressed several issues that usually take place in practice. The addressed issues are: new job arrivals, unexpected due date changes, machine degradation, random breakdowns, minimal repairs, and condition-based maintenance (CBM). We have proposed a real-time optimization-based system that utilizes a modified hybrid genetic algorithm, an integrated proactive-reactive optimization model, and hybrid rescheduling policies. A set of modified benchmark problems is used to test the proposed system by comparing its performance to several other optimization algorithms and methods used in practice. The results show the superiority of the proposed system for solving the problem under study. The results also emphasize the importance of the quality of the generated baseline plans (i.e., initial integrated plans), the use of hybrid rescheduling policies, and the importance of rescheduling times (i.e., reaction times) for cost savings.  相似文献   

4.
This paper presents an approach that is suitable for Just-In-Time (JIT) production for multi-objective scheduling problem in dynamically changing shop floor environment. The proposed distributed learning and control (DLC) approach integrates part-driven distributed arrival time control (DATC) and machine-driven distributed reinforcement learning based control. With DATC, part controllers adjust their associated parts' arrival time to minimize due-date deviation. Within the restricted pattern of arrivals, machine controllers are concurrently searching for optimal dispatching policies. The machine control problem is modeled as Semi Markov Decision Process (SMDP) and solved using Q-learning. The DLC algorithms are evaluated using simulation for two types of manufacturing systems: family scheduling and dynamic batch sizing. Results show that DLC algorithms achieve significant performance improvement over usual dispatching rules in complex real-time shop floor control problems for JIT production.  相似文献   

5.
甘婕  张文宇  王磊  张晓红 《控制与决策》2021,36(6):1377-1386
为了解决生产调度过程中由系统维护维修产生的资源闲置和时间成本增加问题,将系统维修与生产调度联合建模.在众多学者将系统作为整体进行生产调度与维修研究的基础上,考虑系统内各组成部件之间的复杂关系.针对具有经济相关性的两部件系统,以调度作业加工顺序、预防性维修阈值、机会维修阈值作为决策变量,考虑到两部件同时维修比单部件独立维修更为经济,将机会维修引入到建模之中,制订机会维修、预防性维修、故障后更换的视情维修与生产调度结合的联合策略,通过劣化状态空间划分法给出生产调度过程中所有维修组合及其对应维修概率,推导出联合概率密度函数,建立以最小化总加权期望完成时间为目标的联合优化模型.通过数值实验和灵敏度分析验证所提出的策略及模型的有效性.  相似文献   

6.
Scheduling plays a vital role in ensuring the effectiveness of the production control of a flexible manufacturing system (FMS). The scheduling problem in FMS is considered to be dynamic in its nature as new orders may arrive every day. The new orders need to be integrated with the existing production schedule immediately without disturbing the performance and the stability of existing schedule. Most FMS scheduling methods reported in the literature address the static FMS scheduling problems. In this paper, rescheduling methods based on genetic algorithms are described to address arrivals of new orders. This study proposes genetic algorithms for match-up rescheduling with non-reshuffle and reshuffle strategies which accommodate new orders by manipulating the available idle times on machines and by resequencing operations, respectively. The basic idea of the match-up approach is to modify only a part of the initial schedule and to develop genetic algorithms (GAs) to generate a solution within the rescheduling horizon in such a way that both the stability and performance of the shop floor are kept. The proposed non-reshuffle and reshuffle strategies have been evaluated and the results have been compared with the total-rescheduling method.  相似文献   

7.
In several production systems, buffer stocks are built between consecutive machines to ensure the continuity of supply during interruptions of service caused by breakdowns or planned maintenance actions. However, in previous research, maintenance planning is performed individually without considering buffer stocks. In order to balance the trade-offs between them, in this study, an integrated model of buffer stocks and imperfective preventive maintenance for a production system is proposed. This paper considers a repairable machine subject to random failure for a production system by considering buffer stocks. First, the random failure rate of a machine becomes larger with the increase of the number of random failures. Thus, the renewal process is used to describe the number of random failures. Then, by considering the imperfect maintenance action reduced the age of the machine partially, a mathematical model is developed in order to determine the optimal values of the two decision variables which characterize the proposed maintenance strategy and which are: the size of the buffer stock and the maintenance interval. The optimal values are those which minimize the average total cost per time unit including maintenance cost, inventory holding cost and shortage cost, and satisfy the availability constraint. Finally, a heuristic procedure is used to solve the proposed model, and one experiment is used to evaluate the performance of the proposed methods for joint optimization between buffer stocks and maintenance policy. The results show that the proposed methods have a better performance for the joint optimization problem and can be able to obtain a relatively good solution in a short computation time.  相似文献   

8.
This paper proposes an integrated job shop scheduling and assembly sequence planning (IJSSASP) approach for discrete manufacturing, enabling the part processing sequence and assembly sequence to be optimized simultaneously. The optimization objectives are to minimize the total production completion time and the total inventory time of parts during production. The interaction effects between the job shop schedule and the assembly sequence plan in discrete manufacturing are analyzed, and the mathematical models including the objective functions and the constraints are established for IJSSASP. Based on the above, a non-dominated sorting genetic algorithm-II (NSGA-Ⅱ) with a hybrid chromosome coding mechanism is applied to solve the IJSSASP problem. Through the case studies and comparison tests for different scale problems, the proposed IJSSASP approach is verified to be able to improve the production efficiency and save the manufacturing cost of the discrete manufacturing enterprise more effectively.  相似文献   

9.
In this paper, the problem of lot-sizing and scheduling of multiple product types in a capacitated flow shop with availability constraints for multi-period planning horizon is considered. In many real production systems, machines may be unavailable due to breakdowns or preventive maintenance activities, thus integrating lot-sizing and scheduling with maintenance planning is necessary to model real manufacturing conditions. Two variants are considered to deal with the maintenance activities. In the first, the starting times of maintenance tasks are fixed, whereas in the second one, maintenance must be carried out in a given time window. A new mixed-integer programming (MIP) model is proposed to formulate the problem with sequence-dependent setups and availability constraints. The objective is to find a production and preventive maintenance schedule that minimizes production, holding and setup costs. Three MIP-based heuristics with rolling horizon framework are developed to generate the integrated plan. Computational experiments are performed on randomly generated instances to show the efficiency of the heuristics. To evaluate the validity of the solution methods, problems with different scales have been studied and the results are compared with the lower bound. Computational experiments demonstrate that the performed methods have good-quality results for the test problems.  相似文献   

10.
In this paper, a hierarchical control system is proposed for automated flexible manufacturing cells (FMCs) that operate in a job shop flow setting. The control system is made up of a higher level scheduler that optimizes the production flow within the cell, and a lower level supervisor that implements the decisions of the scheduler on the shop floor. To obtain the supervisor, a production schedule is transformed into an augmented Marked Graph (MG) model that can interact with the cell devices. Because of the flow complexities inherent in job shop systems, they are usually prone to deadlocks. Accordingly, this paper also proposes a necessary condition for deadlock occurrence in the scheduling phase. The proposed approach is validated by implementation in an experimental manufacturing cell.  相似文献   

11.
Computer integrated manufacturing (CIM) has been introduced to maintain the integrity of all phases of an automated manufacturing system. Implementing a CIM system needs the environment of Just-In-Time (JIT) production to avoid the overproduction. The most important requirement of JIT is valid scheduling to have the parts available on time.

An integrated scheduling procedure was considered by the selected dispatching rules for job performance criteria using the regeneration methods which releases the new jobs from the job pool to the shop floor when predetermined conditions are met.

The experimental design and analysis is performed as a single-factor complete-random two-way ANOVA (analysis of variance). As a result of experimental design, the new jobs regeneration methods would play a major role to control the performance criteria.  相似文献   


12.
In this paper, we propose a new method for scheduling of maintenance operations in a manufacturing system using the continuous assessment and prediction of the level of performance degradation of manufacturing equipment, as well as the complex interaction between the production process and maintenance operations. Effects of any maintenance schedule are evaluated through a discrete-event simulation that utilizes predicted probabilities of machine failures in the manufacturing system, where predicted probabilities of failure are assumed to be available either from historical equipment reliability information or based on the newly available predictive algorithms. A Genetic Algorithm based optimization procedure is used to search for the most cost-effective maintenance schedule, considering both production gains and maintenance expenses. The algorithm is implemented in a simulated environment and benchmarked against several traditional maintenance strategies, such as corrective maintenance, scheduled maintenance and condition-based maintenance. In all cases that were studied, application of the newly proposed maintenance scheduling tool resulted in a noticeable increase in the cost-benefits, which indicates that the use of predictive information about equipment performance through the newly proposed maintenance scheduling method could result in significant gains obtained by optimal maintenance scheduling.  相似文献   

13.
In this paper, the need for knowledge-based simulation technique in shop floor scheduling are addressed. A prototype integrated system in Feed Mill manufacturing utilizing an integrated approach of Artificial Intelligence (AI) and simulation is discussed. The system is designed to support the production planner in scheduling and controlling the shop floor on real-time and on-line basis. System overview with the emphasis on knowledge-based simulation module is described.  相似文献   

14.
With the increasing attention on sustainable manufacturing, operation and maintenance (O&M) management focuses on not only budget limit, but also energy saving. For modern CNC systems, besides the energy consumption to operate and maintain the machine, a majority of energy consumption generated from tool wear should be considered. It means both machine degradation and tool wear are required to be modelled for the global saving energy. Thus, this paper proposes an energy-oriented joint optimization of machine maintenance and tool replacement (EJMR) policy by integrating energy consumption mechanisms and joint maintenance opportunities in a machine-tool system. The key issue is to combine the preventive maintenance (PM) scheduling of the machine and the polish/preventive replacement (PR) optimization of sequential tools to form energy-effective schemes. Therefore, joint maintenance opportunities of PM actions are utilized to perform tool polish/PR based on energy consumption mechanisms. Four successive procedures (energy consumption analysis, energy-oriented PM scheduling, machine-tool PR model and integrated decision-making process) are developed. Thereby optimal intervals of machine PM and tool polish/PR are obtained to save energy. The case study illustrates that compared with conventional maintenance policies, this proposed EJMR policy can significantly reduce the total non-value-added energy consumption (TNVE) in sustainable manufacturing.  相似文献   

15.
Two-machine flow shops are widely adopted in manufacturing systems. To minimize the makespan of a sequence of jobs, joint optimization of job scheduling and preventive maintenance (PM) planning has been extensively studied for such systems. In practice, the operating condition (OC) of the two machines usually varies from one job to another because of different processing covariates, which directly affects the machines’ failure rates, PM plans, and expected job completion times. This fact is common in many real systems, but it is often overlooked in the related literature. In this study, we propose a joint decision-making strategy for a two-machine flow shop with resumable jobs. The objective is to minimize the expected makespan by taking into account job-dependent OC. We consider two situations. In the first situation, where the failure rate of a machine under a fixed OC is constant, a hybrid processing time model is proposed to obtain the optimal job sequence based on the Johnson's law. For the second situation, where the failure rate of a machine is time-varying, the job sequence and PM plan are jointly optimized. An enumeration method is adopted to find the optimal job sequence and PM plan for a small-scale problem, and a genetic algorithm-based method is proposed to solve a large-scale problem. Numerical examples are provided to demonstrate the necessity of considering the effect of job-dependent OC and the effectiveness of the proposed method in handing such joint decision-making problems in manufacturing systems.  相似文献   

16.
The permutation flow shop scheduling is a well-known combinatorial optimization problem that arises in many manufacturing systems. Over the last few decades, permutation flow shop problems have widely been studied and solved as a static problem. However, in many practical systems, permutation flow shop problems are not really static, but rather dynamic, where the challenge is to schedule n different products that must be produced on a permutation shop floor in a cyclical pattern. In this paper, we have considered a make-to-stock production system, where three related issues must be considered: the length of a production cycle, the batch size of each product, and the order of the products in each cycle. To deal with these tasks, we have proposed a genetic algorithm based lot scheduling approach with an objective of minimizing the sum of the setup and holding costs. The proposed algorithm has been tested using scenarios from a real-world sanitaryware production system, and the experimental results illustrates that the proposed algorithm can obtain better results in comparison to traditional reactive approaches.  相似文献   

17.
The joint optimization of production scheduling and maintenance planning has a significant influence on production continuity and machine reliability. However, limited research considers preventive maintenance (PM) and corrective maintenance (CM) in assembly permutation flow shop scheduling. This paper addresses the bi-objective joint optimization of both PM and CM costs in assembly permutation flow shop scheduling. We also propose a new mixed integer linear programming model for the minimization of the makespan and maintenance costs. Two lemmas are inferred to relax the expected number of failures and CM cost to make the model linear. A restarted iterated Pareto greedy (RIPG) algorithm is applied to solve the problem by including a new evaluation of the solutions, based on a PM strategy. The RIPG algorithm makes use of novel bi-objective-oriented greedy and referenced local search phases to find non-dominated solutions. Three types of experiments are conducted to evaluate the proposed MILP model and the performance of the RIPG algorithm. In the first experiment, the MILP model is solved with an epsilon-constraint method, showing the effectiveness of the MILP model in small-scale instances. In the remaining two experiments, the RIPG algorithm shows its superiority for all the instances with respect to four well-known multi-objective metaheuristics.  相似文献   

18.
The present paper offers an integrated approach to real-world production scheduling for the food processing industries. A manufacturing execution system is very appropriate to monitor and control the activities on the shop floor. Therefore, a specialized scheduler, which is the focus of this paper, has been developed to run at the core of such a system. The scheduler builds on the very general Resource Constrained Project Scheduling Problem with Generalized Precedence Relations. Each local decision step (e.g. choosing a route in the plant layout) is modeled as a separate module interconnected in a feedback loop. The quality of the generated schedules will guide the overall search process to continuously improve the decisions at an intermediate level by using local search strategies. Besides optimization methods, data mining techniques are applied to historical data in order to feed the scheduling process with realistic background knowledge on key performance indicators, such as processing times, setup times, breakdowns, etc. The approach leads to substantial speed and quality improvements of the scheduling process compared to the manual practice common in production companies. Moreover, our modular approach allows for further extending or improving modules separately, without interfering with other modules.  相似文献   

19.
High-Variety, Low-Volume (HVLV) manufacturing systems are built to produce parts of several types in small quantities and under multiple production objectives. They relate to job-shop systems well known by researchers. One of the most studied assumptions of HVLV systems scheduling is considering that machines may be periodically unavailable during the production scheduling. This article deals with an analytical integrating method using (max, +) algebra to model HVLV scheduling problems subject to preventive maintenance (PM) while considering machines availability constraints. Each machine is subject to PM while maintaining flexibility for the start time of the maintenance activities during the planning period. The proposed model controls the placement of maintenance activities along the production operations. Indeed, the sequencing of maintenance activities on the machines depends on the criteria to minimize and may be different for each criteria value. For preventive maintenance, the proposed model aims to generate the best sequencing between activities while respecting the planning program that satisfy the optimal criteria values. In order to illustrate the performance of the proposed methodology, a simulation example is given.  相似文献   

20.
Manufacturing job shop scheduling is a notoriously difficult problem that lends itself to various approaches - from optimal algorithms to suboptimal heuristics. We combined popular heuristic job shop-scheduling approaches with emerging AI techniques to create a dynamic and responsive scheduler. We fashioned our job shop scheduler's architecture around recent holonic manufacturing systems architectures and implemented our system using multiagent systems. Our scheduling approach is based on evolutionary algorithms but differs from common approaches by evolving the scheduler rather than the schedule. A holonic, multiagent systems approach to manufacturing job shop scheduling evolves the schedule creation rules rather than the schedule itself. The authors test their approach using a benchmark agent-based scheduling problem and compare performance results with other heuristic-scheduling approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号