首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have characterized two different types of Cl- currents in calf pulmonary artery endothelial (CPAE) cells by using a combined patch-clamp and Fura-2 microfluorescence technique to measure simultaneously ionic currents and the intracellular Ca2+ concentration, [Ca2+]i. Exposure of CPAE cells to 28% hypotonic solution induces cell swelling without a change in membrane capacitance and [Ca2+]i, and concomitantly activates a current. This current, I(Cl, vol), is closely correlated with the changes in cell volume and shows a modest outward rectification. It slowly inactivates at potentials more positive than +60 mV but is time- and voltage-independent at other potentials. Increase in [Ca2+]i by different maneuvers, such as application of vasoactive agonists (ATP), ionomycin, or loading of the cells directly with Ca2+ also activates a Cl- current, I(Cl, Ca). This current slowly activates at positive potentials, inactivates quickly at negative potentials and shows strong outward rectification. A time-independent component of the current activated by elevation of [Ca2+]i alone can be inhibited by cell shrinking by exposing the cells to hypertonic solution, indicating that an increase in [Ca2+]i also co-activates I(Cl, vol). Forskolin or cAMP never activated a current in CPAE cells, which indicates the lack of cAMP-activated channels in these cells. There is also no evidence for the existence of voltage-gated Cl- channels in resting, nonstimulated cells. Challenging a cell with elevated [Ca2+]i and hypotonic solutions activated I(Cl, vol) on top of I(Cl, Ca), suggesting that I(Cl, Ca) and I(Cl, vol) are different channels. We conclude that CPAE cells do not express voltage-gated (ClC-type) or cAMP-gated (CFTR-type) Cl- channels, but activate large Cl- currents after volume (mechanical?) or chemical (Ca2+) stimulation.  相似文献   

2.
Fluorescence videomicroscopy was used to monitor changes in the cytosolic free Ca2+ concentration ([Ca2+]i) in the mouse muscle cell line C2Cl2 during in vitro myogenesis. Three different patterns of changes in [Ca2+]i were observed: (i) [Ca2+]i oscillations; (ii) faster Ca2+ events confined to subcellular regions (localized [Ca2+]i spikes) and (iii) [Ca2+]i spikes detectable in the entire myotube (global [Ca2+]i spikes). [Ca2+]i oscillations and localized [Ca2+]i spikes were detectable following the appearance of caffeine-sensitivity in differentiating C2Cl2 cells. Global [Ca2+]i spikes appeared later in the process of myogenesis in cells exhibiting coupling between voltage-operated Ca2+ channels and ryanodine receptors. In contrast to [Ca2+]i oscillations and localized [Ca2+]i spikes, the global events immediately stopped when cells were perfused either with a Ca2+-free solution, or a solution with TTX, TEA and verapamil. To explore further the mechanism of the global [Ca2+]i spikes, membrane currents and fluorescence signals were measured simultaneously. These experiments revealed that global [Ca2+]i spikes were correlated with an inward current. Moreover, while the depletion of the Ca2+ stores blocked [Ca2+]i oscillations and localized [Ca2+]i spikes, it only reduced the amplitude of global [Ca2+]i spikes. It is suggested that, during the earlier stages of the myogenesis, spontaneous and repetitive [Ca2+]i changes may be based on cytosolic oscillatory mechanisms. The coupling between voltage-operated Ca2+ channels and ryanodine receptors seems to be the prerequisite for the appearance of global [Ca2+]i spikes triggered by a membrane oscillatory mechanism, which characterizes the later phases of the myogenic process.  相似文献   

3.
[Ca2+]i and the Cl- current were measured in isolated submandibular gland acinar and duct cells to characterize and localize the purinergic receptors expressed in these cells. In both cell types 2'-3'-benzoylbenzoyl (Bz)-ATP and ATP increased [Ca2+]i mainly by activation of Ca2+ influx. UTP had only minimal effect on [Ca2+]i at concentrations between 0.1 and 1 mM. However, a whole cell current recording showed that all nucleotides effectively activated Cl- currents. Inhibition of signal transduction through G proteins by guanyl-5'-beta-thiophosphate revealed that the effect of ATP on Cl- current was mediated in part by activation of a G protein-coupled and in part by a G protein-independent receptor. BzATP activated exclusively the G protein-independent portion, whereas UTP activated only the G protein-dependent portion of the Cl- current. Measurement of [Ca2+]i in the microperfused duct showed that ATP stimulated a [Ca2+]i increase when applied to the luminal or the basolateral sides. BzATP increased [Ca2+]i only when applied to the luminal side, whereas UTP at 100 microM increased -Ca2+-i only when applied to the basolateral side. The combined results suggest that duct and possibly acinar cells express P2z receptors in the luminal and P2u receptors in the basolateral membrane.  相似文献   

4.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9-anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

5.
The progesterone-initiated human sperm acrosome reaction (AR) requires a rise in intracellular Ca2+ ([Ca2+]i), extracellular Cl- and apparently increased Cl- flux through a unique steroid receptor/Cl- channel resembling but not identical to a GABA(A)/Cl- channel complex. The present study uses fura-2 loaded human sperm, GABA(A)/Cl- channel blockers (picrotoxin and pregnenolone sulfate) and Cl(-)-containing and Cl(-)-deficient media to determine whether the progesterone-mediated increase in [Ca2+]i is dependent on the Cl- requirement. There was no significant difference between the progesterone-mediated increases of [Ca2+]i obtained in Cl(-)-containing and Cl(-)-deficient media. Picrotoxin did not significantly inhibit the progesterone-mediated increase in [Ca2+]i, and pregnenolone sulfate increased [Ca2+]i to the same extent as progesterone. These results strongly suggest that the increase in [Ca2+]i essential to the AR is independent of the AR Cl- requirement and could be explained by the existence of two different sperm plasma membrane progesterone receptors.  相似文献   

6.
To gain an insight into the effect of erythropoietin (Epo) upon cation transporters and cytosolic free Ca2+ concentration ([Ca2+]i) of vascular smooth muscle cells (VSMC), we studied whether 1) Epo, per se, alters Ca2+ Na+, K+ fluxes and [Ca2+]i of VSMC, and 2) Epo may modify the effect of endothelin (ET-1). Using serially passaged quiescent cultured VSMC, the following results were obtained. 1) Epo had no direct effect on steady state Na(+)-K+ transporters (Na(+)-K+ pump, Na(+)-K+ cotransport and Na(+)-H+ antiport). 2) ET-1 alone substantially stimulated Na(+)-K+ pump, Na(+)-H+ antiport and 45Ca uptake, although these effects were not potentiated in the presence of Epo. 3) Epo alone substantially stimulated 45Ca uptake, leading to an increase in [Ca2+]i, which effect was not seen in Ca2+ deficient medium, and was partially inhibited with diltiazem but not with TMB-8. 4) Even in the presence of Epo, ET-1 and angiotensin II (A II) had substantial stimulatory effect on [Ca2+]i of cultured VSMC. The present data indicate that Epo, per se, elicits an increase in [Ca2+]i of VSMC through the stimulation of inward Ca2+ flux without affecting Na(+)-K+ transporters. In contrast, Epo did not potentiate ET-1's stimulatory effect on the transporters. Although the effect of Epo was subtle compared to ET-1 and A II, it may alter an overall characteristic of vascular smooth muscle cell contractility, possibly leading to blood pressure elevation in patients on maintenance dialysis.  相似文献   

7.
We have shown previously that the non-steroidal anti-inflammatory drug flufenamate (FFA) causes a maintained increase in [Ca2+]i and transient increases in a Ca(2+)-activated nonselective cation current (ICAN) and a Ca(2+)-activated slow, outward Cl- current (lo-slow) in molluscan neurons [Shaw T., Lee R.J., Partridge L.D. Action of diphenylamine carboxylate derivatives, a family of non-steroidal anti-inflammatory drugs, on [Ca2+]i and Ca(2+)-activated channels in neurons. Neurosci Lett 1995; 190:121-124]. Here we demonstrate that pretreatment of neurons with 10 microM thapsigargin eliminates the FFA-induced increase in [Ca2+]i and substantially reduces both ICAN and Io-slow supporting the hypothesis that the FFA-induced increase in [Ca2+]i results primarily from Ca2+ release from a thapsigargin-sensitive intracellular store. The [Ca2+]i response appears to be sustained, not by influx of extracellular Ca2+, but by inhibitory effects of FFA on Ca2+ removal from the cytosol. Inhibition of Ca2+ efflux may be an important component of the FFA-induced activation of both ICAN and Io-slow, as Ca2+ release by thapsigargin alone is not sufficient to activate either current. Our data also demonstrate that the effects of FFA on [Ca2+]i, ICAN and Io-slow are reversible and suggest that protein phosphorylation as well as an increase in [Ca2+]i are involved in the FFA-induced activation of Io-slow. Effects on neuronal Ca2+ handling as well as activation of ICAN or Io-slow may partially explain the analgesic effects of FFA.  相似文献   

8.
The effect of gamma-aminobutyric acid (GABA) on intracellular Ca2+ concentration ([Ca2+]i) in cultured prenatal rat cortical neurons was investigated using fluorescence imaging. GABA or muscimol, but not baclofen, increased [Ca2+]i in a dose-dependent manner. The GABAA receptor antagonists, bicuculline and picrotoxin, inhibited the GABA response. Furosemide, an inhibitor of the Na+/K+/2Cl- cotransporter, inhibited the GABA response in a noncompetitive manner. Ethacrynic acid, an inhibitor of an ATP-dependent Cl- pump, also inhibited the GABA-induced increased in [Ca2+]i. These results suggest a role for Cl- transport processes in the GABA response. The coapplication of GABA and high K+ led to a non-additive increase in the GABA response. The GABA response was also inhibited by nifedipine, a voltage-gated Ca2+ channel blocker, and abolished by the absence of extracellular Ca2+. Results indicate that the GABA response shares a common pathway of Ca2+ movement with the high K(+)-induced response. These observations suggest that the stimulation with GABA results in Ca2+ influx through voltage-gated Ca2+ channels, and that these effects are dependent on Cl- transport systems.  相似文献   

9.
Intracellular pH (pHi) is elucidated to be an important regulator of various cell functions, but the role of pHi in smooth muscle contraction remains to be clarified. The purpose of the present study is to examine the effects of cell alkalinization by exposure to NH4Cl on cytosolic Ca2+ level ([Ca2+]i) and on muscle tone. We attempted simultaneous measurements of both [Ca2+]i and contractile force in rat isolated thoracic aorta from which the endothelium was removed. NH4Cl (10-80 mM) increased both [Ca2+]i and muscle tone in the presence of external Ca2+. These responses were reproducible. The removal of Ca2+ from the nutrient solution partially inhibited the rise in [Ca2+]i and the smooth muscle contraction induced by NH4Cl. In addition, the Ca2+ channel blocker verapamil also partially attenuated the responses to NH4Cl. The NH4Cl-induced responses were gradually reduced as NH4Cl was repeatedly added in a Ca(2+)-free solution. Norepinephrine (NE, 1 microM) induced a transient increase in [Ca2+]i and sustained contraction in the absence of external Ca2+, and the subsequent application of NE had little effect on [Ca2+]i. After internal Ca2+ stores were depleted by exposure to NE, the subsequent application of NH4Cl induced increases in [Ca2+]i and tension of the aorta in a Ca(2+)-free solution. These results suggest that NH4Cl mainly evokes Ca2+ release from the internal Ca2+ stores that are not linked with adrenergic alpha-receptor and causes Ca2+ influx through voltage-dependent Ca2+ channels in the vascular smooth muscle.  相似文献   

10.
Using perforated patch recordings in combination with intracellular Ca2+ ([Ca2+]i) fluorescence measurements, we have identified a delayed Ca(2+)-dependent Cl- current in a mammalian sympathetic ganglion cell. This Cl- current is induced by the synergistic action of Ca2+ and diacylglycerol (DAG) and is blocked by inhibitors of protein kinase C. As a result, the current can be induced by acetylcholine through the conjoint activation of nicotinic receptors (to produce a rise in [Ca2+]i) and muscarinic receptors (to generate DAG). This demonstrates an unusual form of synergism between the two effects of a single transmitter mediated via separate receptors operating within a time scale that could be of physiological significance.  相似文献   

11.
We have used the patch clamp technique combined with simultaneous measurement of intracellular Ca2+ to record ionic currents activated by depletion of intracellular Ca(2+)-stores in endothelial cells from human umbilical veins. Two protocols were used to release Ca2+ from intracellular stores, i.e. loading of the cells via the patch pipette with Ins(1,4,5)P3, and extracellular application of thapsigargin. Ins(1,4,5)P3 (10 microM) evoked a transient increase in [Ca2+]i in cells exposed to Ca(2+)-free extracellular solutions. A subsequent reapplication of extracellular Ca2+ induced an elevation of [Ca2+]i. These changes in [Ca2+]i were very reproducible. The concomitant membrane currents were neither correlated in time nor in size with the changes in [Ca2+]i. Similar changes in [Ca2+]i and membrane currents were observed if the Ca(2+)-stores were depleted with thapsigargin. Activation of these currents was prevented and holding currents at -40 mV were small if store depletion was induced in the presence of 50 microM NPPB. This identifies the large currents, which are activated as a consequence of store-depletion, as mechanically activated Cl- currents, which have been described previously [1,2]. Loading the cells with Ins(1,4,5)P3 together with 10 mM BAPTA induced only a very short lasting Ca2+ transient, which was not accompanied by activation of a detectable current, even in a 10 mM Ca(2+)-containing extracellular solution. Also thapsigargin does not activate any membrane current if the pipette solution contains 10 mM BAPTA (ruptured patches). The contribution of Ca(2+)-influx to the membrane current during reapplication of 10 mM extracellular calcium to thapsigargin-pretreated cells was estimated from the first time derivative of the corresponding Ca2+ transients at different holding potentials. These current values showed strong inward rectification, with a maximal amplitude of 1.0 +/- 0.3 pA at -80 mV (n = 8; membrane capacitance 59 +/- 9 pF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The present study was undertaken to examine the effects of diminished extracellular sodium concentration on the vascular action of arginine vasopressin (AVP) in cultured rat vascular smooth muscle cells (VSMC). The preincubation of cells with the 110 mM extracellular Na+ ([Na+]e) solution supplemented with 30 mM choline chloride for 60 minutes enhanced the effect of AVP- (1 x 10(-8) M) induced VSMC contraction. The treatment of 110 mM [Na+]e solution also enhanced the cellular contractile response to the protein kinase C (PKC) activators, phorbol 12-myristate 13-acetate and 1-oleoyl-2-acetyl-glycerol. Furthermore, preincubation with the 110 mM [Na+]e solution also potentiated the effect of 1 x 10(-8) M AVP, but not 1 x 10(-6) M, to increase the cytosolic-free Ca2+ ([Ca2+]i) concentration. The 110 mM [Na+]e media decreased the basal intracellular Na+ concentration and increased intracellular 45Ca2+ accumulation, basal [Ca2+]i and AVP-produced 45Ca2+ efflux. These effects of 110 mM [Na+]e solution to enhance the vascular action of AVP were abolished by using Ca(2+)-free 110 mM [Na+]e solution during the preincubation period. The preincubation with the 110 mM [Na+]e solution did not change either the Kd and Bmax of AVP V1 receptor of VSMC or the AVP-induced production of inositol 1,4,5-trisphosphate. The present in vitro results therefore indicate that the diminished extracellular fluid sodium concentration within a range observed in clinical hyponatremic states enhances the vascular action of AVP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A Ca2+-activated (ICl,Ca) and a swelling-activated anion current (ICl,vol) were investigated in Ehrlich ascites tumor cells using the whole cell patch clamp technique. Large, outwardly rectifying currents were activated by an increase in the free intracellular calcium concentration ([Ca2+]i), or by hypotonic exposure of the cells, respectively. The reversal potential of both currents was dependent on the extracellular Cl- concentration. ICl,Ca current density increased with increasing [Ca2+]i, and this current was abolished by lowering [Ca2+]i to <1 nm using 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA). In contrast, activation of ICl,vol did not require an increase in [Ca2+]i. The kinetics of ICl,Ca and ICl,vol were different: at depolarized potentials, ICl,Ca as activated in a [Ca2+]i- and voltage-dependent manner, while at hyperpolarized potentials, the current was deactivated. In contrast, ICl,vol exhibited time- and voltage-dependent deactivation at depolarized potentials and reactivation at hyperpolarized potentials. The deactivation of ICl, vol was dependent on the extracellular Mg2+ concentration. The anion permeability sequence for both currents was I- > Cl- > gluconate. ICl,Ca was inhibited by niflumic acid (100 micron), 5-Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 micron) and 4, 4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS, 100 micron), niflumic acid being the most potent inhibitor. In contrast, ICl,vol was unaffected by niflumic acid (100 micron), but abolished by tamoxifen (10 micron). Thus, in Ehrlich cells, separate chloride currents, ICl,Ca and ICl,vol, are activated by an increase in [Ca2+]i and by cell swelling, respectively.  相似文献   

14.
In the present study we have investigated the mechanism of intracellular Ca2+ activity ([Ca2+]i) changes in HT29 cells induced by adenosine triphosphate (ATP), carbachol (CCH), and neurotensin (NT). [Ca2+]i was measured with the fluorescent Ca2+ indicator fura-2 at the single-cell level or in small cell plaques with high time resolution (1-40Hz). ATP and CCH induced not only a dose-dependent [Ca2+]i peak response, but also changes of the plateau phase. The [Ca2+]i plateau was inversely dependent on the ATP concentration, whereas the CCH-induced [Ca2+]i plateau increased at higher CCH concentrations. NT showed (from 10(-10) to 10(-7) mol/l) in most cases only a [Ca2+]i spike lasting 2-3 min. The [Ca2+]i plateau induced by ATP (10(-6) mol/l) and CCH (10(-5) mol/l) was abolished by reducing the Ca2+ activity in the bath from 10(-3) to 10(-4) mol/l (n = 7). In Ca(2+)-free bathing solution the [Ca2+]i peak value for all three agonists was not altered. Using fura-2 quenching by Mn2+ as an indicator of Ca2+ influx the [Ca2+]i peak was always reached before Mn2+ influx started. Every agonist showed this delayed stimulation of the Ca2+ influx with a lag time of 23 +/- 1.5 s (n = 15) indicating a similar mechanism in each case. Verapamil (10(-6)-10(-4) mol/l) blocked dose dependently both phases (peak and plateau) of the CCH-induced [Ca2+]i increase. Short pre-incubation with verapamil augmented the effect on the [Ca2+]i peak, whereas no further influence on the plateau was observed. Ni2+ (10(-3) mol/l) reduced the plateau value by 70%.  相似文献   

15.
We investigated changes in whole-cell currents, cell volume, and intracellular calcium concentration ([Ca2+]i) during hypotonic stimulation in whole-cell clamped cultured amphibian renal cells (A6 cells). Upon being exposed to hypotonic solution (80% osmolality), the A6 cells swelled and peaked in the first 5 min, which was followed by a progressive decrease in cell volume termed regulatory volume decrease (RVD). Following the cell swelling, there were large increases in both outward- and inward-currents, which seemed to be carried by K+ efflux and Cl- efflux, respectively. A K+ channel blocker (TEA or quinine) or a Cl- channel blocker (NPPB or SITS) significantly inhibited both currents and RVD, suggesting that the inward- and outward-currents are highly correlated with each other and essential to RVD. Hypotonic stimulation also induced a transient [Ca2+]i increase, of which the time course was essentially similar to that of the currents. When internal and external Ca2+ were deprived to eliminate the Ca2+ transient increase, whole-cell currents and RVD were strongly inhibited. On the other hand, channel blockers TEA and NPPB, which inhibited whole-cell currents and RVD, did not inhibit the [Ca2+]i increase. It is concluded that hypotonic stimulation to A6 cells first induces cell swelling, which is followed by [Ca2+]i increase that leads to the coactivation of K+ and Cl- channels. This coactivation may accelerate K+ and Cl- effluxes, resulting in RVD.  相似文献   

16.
Endothelins (ETs)- and sarafotoxin (S6b)-induced rises in intracellular Ca2+ concentration ([Ca2+]i) were monitored in cultured canine tracheal smooth muscle cells by using a fluorescent Ca2+ indicator fura-2. ET-1, ET-2, ET-3 and S6b elicited an initial transient peak and followed by a sustained elevation of [Ca2+]i, with half-maximal effect (EC50) of 18, 20, 38 and 21 nM, respectively. BQ-123, an ETA receptor antagonist, had a high affinity to block the rise in [Ca2+]i response to ET-1, ET-2, and S6b, as well as a low affinity for ET-3. Removal of external Ca2+ by addition of EGTA during the sustained phase, caused a rapid decline in [Ca2+]i to the resting level. In the absence of external Ca2+, only an initial transient peak of [Ca2+]i was seen, the sustained elevation of [Ca2+]i could then be evoked by addition of 1.8 mM Ca2+. Ca2+ influx was required for the changes of [Ca2+]i, since the Ca(2+)-channel blockers, diltiazem, verapamil, and Ni2+, decreased both the initial and sustained elevation of [Ca2+]i response to these peptides. ETs exhibited homologous desensitization of the Ca2+ response, but partial heterologous desensitization of the Ca2+ response mediated by carbachol to different extents. In contrast, ETs did not desensitize the Ca2+ response induced by ATP or vice versa. These data demonstrate that the initial detectable increase in [Ca2+]i stimulated by these peptides is due to the activation of ETA receptors and subsequently the release of Ca2+ from internal stores, whereas the contribution of external Ca2+ follows and partially involves a diltiazem- and verapamil-sensitive process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Regulation of the intracellular free magnesium concentration ([Mg2+]i) was investigated in isolated rat hearts, using 31P-nuclear magnetic resonance (31P-NMR). [Mg2+]i was found to be slowly and significantly decreased during prolonged application of isoproterenol (ISO) through beta-adrenergic receptor stimulation, and restored by subsequent washouts. The ISO-induced decrease in [Mg2+]i was antagonized by addition of a muscarinic receptor agonist, carbachol (CCh). In the presence of atropine, CCh did not exert this effect. A water-soluble forskolin derivative, NKH477, which directly activates adenylate cyclase, also caused a decrease in [Mg2+]i, which could be antagonized by CCh, but a greater concentration was required as compared to the ISO case. The manner of [Mg2+]i regulation mimicked those noted for the action potential duration and the Ca2+ channel current, in which cAMP is known to act as a second messenger. Even in the presence of a Ca2+ channel blocker, verapamil, [Mg2+]i was reversibly decreased by ISO. Changes in the intracellular ATP concentration demonstrated any clear correlation with changes in [Mg2+]i. These results suggest that [Mg2+]i can be controlled by a balance of sympathetic and parasympathetic activities. cAMP may play a key role in the [Mg2+]i regulation via beta-adrenergic and muscarinic receptors, although some other metabolic pathways also appear to be involved. Hormonally induced changes in [Mg2+]i have possible clinical significance.  相似文献   

18.
Despite pronounced differences by which membrane-depolarizing or phospholipase C-activating stimuli initiate contractile responses, a rise in [Ca2+]i is considered the primary mechanism for induction of smooth muscle contractions. Subsequent to the formation of the well-characterized Ca(2+)4-calmodulin complex, interaction with the catalytic subunit of myosin light chain kinase triggers phosphorylation of 20 kDa myosin light chain and activates actin-dependent Mg2+-ATPase activity, which ultimately leads to the development of tension. The present article reviews the fundamental mechanisms leading to an increase in [Ca2+]i and discusses the biochemical processes involved in the transient and sustained phases of contraction. Moreover, the commentary summarizes current knowledge on the modulatory effect of changes in the microviscosity of the plasma membrane on the Ca2+ transient as well as the contractile response of smooth muscle. Evidence has accumulated that these changes in microviscosity alter the activity of membrane-bound enzymes and affect the generation of endogenous mediators responsible for the regulation of cytosolic Ca2+ concentrations and for the [Ca2+]i-sensitivity of myosin light chain phosphorylation.  相似文献   

19.
Effects of phorbol ester, 12-deoxyphorbol 13-isobutyrate (DPB), on muscle tension and cytosolic Ca2+ ([Ca2+]i) level was investigated in rat anococcygeus muscle in comparison with other smooth muscles. 1) DPB (10(-6) M) induced a large contraction and an elevation of [Ca2+]i level in rat aorta and small and rhythmic changes in tension and [Ca2+]i level in guinea pig ileum. However, DPB did not change either of the parameters in rat anococcygeus muscle. 2) DPB caused tension development without changing the [Ca2+]i level elevated by high K+, ionomycin or beta-escin in the anococcygeus muscle. 3) In the beta-escin permeabilized muscles of guinea pig ileum and urinary bladder, rabbit mesenteric artery and rat anococcygeus muscle, DPB enhanced the Ca(2+)-developed tension. Moreover, the enhancement was inhibited by H-7 (3 x 10(-5) M). 4) DPB did not cause muscle tension to develop in the muscle of rat aorta, guinea pig ileum and rat anococcygeus muscle, pretreated with phorbol 12-myristate 13-acetate for 24 hr. In conclusion, DPB showed different contractile effects on the aorta, ileum and anococcygeus muscle, respectively. The initiation of muscle tension by DPB probably requires [Ca2+]i and the DPB-induced enhancement may be due to a Ca2+ sensitization of contractile elements in the anococcygeus muscle. Therefore, the difference between the DPB-induced response of the anococcygeus muscle and those of the other muscles seems to be due to a different Ca2+ movement caused by DPB. Moreover, it is suggested that DPB develops muscle tension by increasing [Ca2+]i and enhances it through the mediation of protein kinase C in the anococcygeus muscle as well as the other smooth muscles.  相似文献   

20.
In response to extracellular application of 50 microM ATP, all individual porcine aortic smooth muscle cells respond with rapid rises from basal [Ca2+]i to peak [Ca2+]i within 5 s. The time from stimulus to the peak of the [Ca2+]i response increases with decreasing concentration of ATP. At ATP concentrations of 0.5 microM and below, the time to the [Ca2+]i peak varies more significantly from cell to cell than at higher concentrations, and each cell shows complicated initiation and decay kinetics. For any individual cell, the lag phase before a response decreases with increasing concentration of ATP. An increase in lag time with decreasing ATP concentration is also observed in the absence of extracellular Ca2+, but the lag phase is more pronounced, especially at concentrations of ATP below 0.5 microM. Whole-cell patch-clamp electrophysiology shows that in porcine aortic smooth muscle cells, ATP stimulates an inward current carried mainly by Cl- ion efflux with a time course similar to the [Ca2+]i changes and no detectable current from an ATP-gated cation channel. A simple signal cascade initiation kinetics model, starting with nucleotide receptor activation leading to IP3-mediated Ca2+ release from IP3-sensitive internal stores, fits the data and suggests that the kinetics of the Ca2+ response are dominated by upstream signal cascade components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号