首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This paper deals with the cellular manufacturing system (CMS) that is based on group technology (GT) concepts. CMS is defined as identifying the similar parts that are processed on the same machines and then grouping them as a cell. The most proposed models for solving CMS problems are focused on cell formation and intracellular machine layout problem while cell layout is considered in few papers. In this paper we apply the multiple attribute decision making (MADM) concept and propose a two-stage method that leads to determine cell formation, intracellular machine layout and cell layout as three basic steps in the design of CMS. In this method, an initial solution is obtained from technique for order preference by similarity to the ideal solution (TOPSIS) and then this solution is improved. The results of the proposed method are compared with well-known approaches that are introduced in literature. These comparisons show that the proposed method offers good solutions for the CMS problem. The computational results are also reported.  相似文献   

2.
制造系统中的单向环型设备布局设计   总被引:8,自引:0,他引:8  
提出一种优化建模与虚拟现实技术相结合的求解策略,较好地解决了制造系统中的单向环型设备布局问题.研究该问题的固有特性,提出三条定理,构建了一个启发式算法,并实现了一个沉浸式虚拟布局设计的例子.  相似文献   

3.
Layout has a significant role on the efficiency of manufacturing systems, but it has not received attention of researchers in comparison to cell formation in cellular manufacturing systems. In this paper, a mathematical model for facility layout in a cellular manufacturing system is proposed that minimizes both inter-cell and intra-cell material handling costs. A variant of simulated annealing algorithm is developed to solve the model. The developed algorithm produces solutions with better quality and less computation time in comparison with the benchmarked algorithm. The superiority of the algorithm in computation time is considerable especially when the size of the problem increases.  相似文献   

4.
This paper presents a novel mixed-integer non-linear programming model for the layout design of a dynamic cellular manufacturing system (DCMS). In a dynamic environment, the product mix and part demands are varying during a multi-period planning horizon. As a result, the best cell configuration for one period may not be efficient for successive periods, and thus it necessitates reconfigurations. Three major and interrelated decisions are involved in the design of a CMS; namely cell formation (CF), group layout (GL) and group scheduling (GS). A novel aspect of this model is concurrently making the CF and GL decisions in a dynamic environment. The proposed model integrating the CF and GL decisions can be used by researchers and practitioners to design GL in practical and dynamic cell formation problems. Another compromising aspect of this model is the utilization of multi-rows layout to locate machines in the cells configured with flexible shapes. Such a DCMS model with an extensive coverage of important manufacturing features has not been proposed before and incorporates several design features including alternate process routings, operation sequence, processing time, production volume of parts, purchasing machine, duplicate machines, machine capacity, lot splitting, intra-cell layout, inter-cell layout, multi-rows layout of equal area facilities and flexible reconfiguration. The objective of the integrated model is to minimize the total costs of intra and inter-cell material handling, machine relocation, purchasing new machines, machine overhead and machine processing. Linearization procedures are used to transform the presented non-linear programming model into a linearized formulation. Two numerical examples taken from the literature are solved by the Lingo software using a branch-and-bound method to illustrate the performance of this model. An efficient simulated annealing (SA) algorithm with elaborately designed solution representation and neighborhood generation is extended to solve the proposed model because of its NP-hardness. It is then tested using several problems with different sizes and settings to verify the computational efficiency of the developed algorithm in comparison with the Lingo software. The obtained results show that the proposed SA is able to find the near-optimal solutions in computational time, approximately 100 times less than Lingo. Also, the computational results show that the proposed model to some extent overcomes common disadvantages in the existing dynamic cell formation models that have not yet considered layout problems.  相似文献   

5.
This paper proposes a multiobjective layout optimization method for the conceptual design of robot cellular manufacturing systems. Robot cellular manufacturing systems utilize one or more flexible robots which can carry out a large number of operations, and can conduct flexible assemble processes. The layout design stage of such manufacturing systems is especially important since fundamental performances of the manufacturing system under consideration are determined at this stage. In this paper, the design criteria for robot cellular manufacturing system layout designs are clarified, and objective functions are formulated. Next, layout design candidates are represented using a sequence-pair scheme to avoid interference between assembly system components, and the use of dummy components is proposed to represent layout areas where components are sparse. A multiobjective genetic algorithm is then used to obtain Pareto optimal solutions for the layout optimization problems. Finally, several numerical examples are provided to illustrate the effectiveness and usefulness of the proposed method.  相似文献   

6.
Cell formation is the first step in the design of cellular manufacturing systems. In this study, an efficient tabu search algorithm based on a similarity coefficient is proposed to solve the cell formation problem with alternative process routings and machine reliability considerations. In the proposed algorithm, good initial solutions are first generated and later on improved by a tabu search algorithm combining the mutation operator and an effective neighborhood solution searching mechanism. Computational experiences from test problems show that the proposed approach is extremely effective and efficient. When compared with the mathematical programming approach which took three hours to solve problems, the proposed algorithm is able to produce optimal solutions in less than 2 s.  相似文献   

7.
In this study, a transporter routing problem is analyzed and adapted for use in manufacturing facility design. Given fixed facility layout and predetermined material flow paths, this study determines the minimum number of transporters required to transfer material within a given manufacturing facility with minimal handling effort. The manufacturing facility design problem is particularly complex and involves the sub-problems such as design of the material network and the transporter routing problem, which provides the fleet size and the routing of each transporter over the flow network. The problem is formulated as an integer program. To solve the problem, we used a heuristic and integrated vehicle routing model. We also developed a heuristic solution program and several tests along with an industrial example to indicate the effectiveness of this method.  相似文献   

8.
The purpose of cellular manufacturing (CM) is to find part-families and machine cells which form self-sufficient units of production with a certain amount of autonomy that result in easier control (Kusiak, 1987, 1990). One of the most important steps in CM is to optimally identify cells from a given part-machine incidence matrix. Several formulations of various complexities are proposed in the literature to deal with this problem. One of the mostly known formulations for CM is the quadratic assignment formulation (Kusiak and Chow, 1988). The problem with the quadratic assignment based formulation is the difficulty of its solution due to its combinatorial nature. The formulation is also known as NP-hard (Kusiak and Chow, 1988). In this paper a novel simulated annealing based meta-heuristic algorithm is developed to solve quadratic assignment formulations of the manufacturing cell formation problems. In the paper a novel solution representation scheme is developed. Using the proposed solution representation scheme, feasible neighborhoods can be generated easily. Moreover, the proposed algorithm has the ability to self determine the optimal number of cell during the search process. A test problem is solved to present working of the proposed algorithm.  相似文献   

9.
Multiple-attribute decision making methods for plant layout design problem   总被引:15,自引:0,他引:15  
The layout design problem is a strategic issue and has a significant impact on the efficiency of a manufacturing system. Much of the existing layout design literature that uses a surrogate function for flow distance or for simplified objectives may be entrapped into local optimum; and subsequently lead to a poor layout design due to the multiple-attribute decision making (MADM) nature of a layout design decision. The present study explores the use of MADM approaches in solving a layout design problem. The proposed methodology is illustrated through a practical application from an IC packaging company. Two methods are proposed in solving the case study problem: Technique for order preference by similarity to ideal solution (TOPSIS) and fuzzy TOPSIS. Empirical results showed that the proposed methods are viable approaches in solving a layout design problem. TOPSIS is a viable approach for the case study problem and is suitable for precise value performance ratings. When the performance ratings are vague and imprecise, the fuzzy TOPSIS is a preferred solution method.  相似文献   

10.
Single row machine layout problem is one of the most commonly used layout patterns, especially in flexible manufacturing systems. In this paper, this problem is formulated as a non-linear 0-1 programming model in which the distance between the machines is sequence dependent. An ant algorithm has been developed to solve this problem. A technique is proposed to efficiently implement the proposed algorithm. The performance of the proposed heuristic is tested over a number of problems selected from the literature. Computational results indicate that the proposed approach is more effective compared to many existing algorithms in this area.  相似文献   

11.
In the past several years, many studies have been carried out on cellular manufacturing based on a two-dimensional machine–part incidence matrix. Since workers have important role in doing jobs on machines, assignment of workers to cells becomes a crucial factor for fully utilization of cellular manufacturing systems. In this paper, an attempt is made to solve cell formation problem and minimize the number of voids and exceptional elements in a three dimensional (cubic) machine–part–worker incidence matrix. The proposed mathematical model captures the capability of workers in doing different jobs. To demonstrate the effectiveness of the proposed model, the solution of some test problems is compared with the literature method.  相似文献   

12.
This paper discusses and reviews a fundamental issue in cellular manufacturing—cell formation. This problem is of strategic and operational importance in that it affects the fundamental structure and the overall layout of a cellular manufacturing system. We first provide a comprehensive mathematical formulation of the cell formation problem and then propose a methodology-based classification of prior research. This classification is used in reviewing the most recent literature on the cell formation problem. Based on a comparison and critical evaluation, we highlight the shortcomings of current approaches and also outline directions for future research.  相似文献   

13.
One fundamental problem in cellular manufacturing is the formation of product families and machine cells. Many solution methods have been developed for the cell formation problem. Since efficient grouping is the prerequisite of a successful Cellular Manufacturing installation the research in this area will likely be continued. In this paper, we consider the problem of cell formation in cellular manufacturing systems with the objective of maximizing the grouping efficacy. We propose a Genetic Algorithm (GA) to obtain machine-cells and part-families. Developed GA has three different selection and crossover operators. The proper operators and parameters of the GA were determined by design of experiments. A set of 15 test problems with various sizes drawn from the literature is used to test the performance of the proposed algorithm. The corresponding results are compared to several well-known algorithms published. The comparative study shows that the proposed GA improves the grouping efficacy for 40% of the test problems.  相似文献   

14.
Multi-objective layout optimization methods for the conceptual design of robot cellular manufacturing systems are proposed in this paper. Robot cellular manufacturing systems utilize one or more flexible robots which can carry out a large number of operations, and can conduct flexible assemble processes. The layout design stage of such manufacturing systems is especially important since fundamental performances of the manufacturing system under consideration are determined at this stage. Layout area, operation time and manipulability of robot are the three important criteria when it comes to designing manufacturing system. The use of nature inspired algorithms are not extensively explored to optimize robot workcell layouts. The contribution in this paper is the use of five nature-inspired algorithms, viz. genetic algorithm (GA), differential evolution (DE), artificial bee colony (ABC), charge search system (CSS) and particle swarm optimization (PSO) algorithms and to optimize the three design criteria simultaneously. Non-dominated sorting genetic algorithm-II is used to handle multiple objectives and to obtain pareto solutions for the problems considered. The performance of sequence pair and B*-Tree layout representation schemes are also evaluated. It is found that sequence pair scheme performs better than B*-Tree representation and it is used in the algorithms. Numerical examples are provided to illustrate the effectiveness and usefulness of the proposed methods. It is observed that PSO performs better over the other algorithms in terms of solution quality.  相似文献   

15.
This paper presents a mixed-integer programming model for a multi-floor layout design of cellular manufacturing systems (CMSs) in a dynamic environment. A novel aspect of this model is to concurrently determine the cell formation (CF) and group layout (GL) as the interrelated decisions involved in the design of a CMS in order to achieve an optimal (or near-optimal) design solution for a multi-floor factory in a multi-period planning horizon. Other design aspects are to design a multi-floor layout to form cells in different floors, a multi-rows layout of equal area facilities in each cell, flexible reconfigurations of cells during successive periods, distance-based material handling cost, and machine depot keeping idle machines. This model incorporates with an extensive coverage of important manufacturing features used in the design of CMSs. The objective is to minimize the total costs of intra-cell, inter-cell, and inter-floor material handling, purchasing machines, machine processing, machine overhead, and machine relocation. Two numerical examples are solved by the CPLEX software to verify the performance of the presented model and illustrate the model features. Since this model belongs to NP-hard class, an efficient genetic algorithm (GA) with a matrix-based chromosome structure is proposed to derive near-optimal solutions. To verify its computational efficiency in comparison to the CPLEX software, several test problems with different sizes and settings are implemented. The efficiency of the proposed GA in terms of the objective function value and computational time is proved by the obtained results.  相似文献   

16.
Implementation of cellular manufacturing systems (CMS) is thriving among manufacturing companies due to many advantages that are attained by applying this system. In this study CMS formation and layout problems are considered. An Electromagnetism like (EM-like) algorithm is developed to solve the mentioned problems. In addition the required modifications to make EM-like algorithm applicable in these problems are mentioned. A heuristic approach is developed as a local search method to improve the quality of solution of EM-like. Beside in order to examine its performance, it is compared with two other methods. The performance of EM-like algorithm with proposed heuristic and GA are compared and it is demonstrated that implementing EM-like algorithm in this problem can improve the results significantly in comparison with GA. In addition some statistical tests are conducted to find the best performance of EM-like algorithm and GA due to their parameters. The convergence diagrams are plotted for two problems to compare the convergence process of the algorithms. For small size problems the performances of the algorithms are compared with an exact algorithm (Branch & Bound).  相似文献   

17.
A simulated annealing algorithm for dynamic layout problem   总被引:1,自引:0,他引:1  
Increased level of volatility in today's manufacturing world demanded new approaches for modelling and solving many of its well-known problems like the facility layout problem. Over a decade ago Rosenblatt published a key paper on modelling and solving dynamic version of the facility layout problems. Since then, various other researchers proposed new and improved models and algorithms to solve the problem. Balakrishnan and Cheng have recently published a comprehensive review of the literature about this subject. The problem was defined as a complex combinatorial optimisation problem. The efficiency of SA in solving combinatorial optimisation problems is very well known. However, it has recently not been applied to DLP based on the review of the available literature. In this research paper a SA-based procedure for DLP is developed and results for test problems are reported.

Scope and purpose

One of the characteristic of today's manufacturing environments is volatility. Under a volatile environment (or dynamic manufacturing environment) demand is not stable. To operate efficiently under such environments facilities must be adaptive to changing demand conditions. This requires solution of the dynamic layout problem (DLP). DLP is a complex combinatorial optimisation problem for which optimal solutions can be found for small size problems. This research paper makes use of a SA algorithm to solve the DLP. Simulated annealing (SA) is a well-established stochastic neighbourhood search technique. It has a potential to solve complex combinatorial optimisation problems. The paper presents in detail how to apply SA to solve DLP and an extensive computational study. The computational study shows that SA is quite effective in solving dynamic layout problems.  相似文献   

18.
Outbound logistics network (OLN) in the downstream supply chain of a firm plays a dominant role in the success or failure of that firm. This paper proposes the design of a hybrid and flexible OLN in multi objective context. The proposed distribution network for a manufacturing supply chain consists of a set of customer zones (CZs) at known locations with known demands being served by a set of potential manufacturing plants, a set of potential central distribution centers (CDCs), and a set of potential regional distribution centers (RDCs). Three variants of a single product classified based on nature of demand are supplied to CZs through three different distribution channels. The decision variables include number of plants, CDCs, RDCs, and quantities of each variant of product delivered to CZs through a designated distribution channel. The goal is to design the network with multiple objectives so as to minimize the total cost, maximize the unit fill rates, and maximize the resource utilization of the facilities in the network. The problem is formulated as a mixed integer linear programming problem and a multiobjective genetic algorithm (MOGA) called non-dominated sorting genetic algorithm—II (NSGA-II) is employed to solve the resulting NP-hard combinatorial optimization problem. Computational experiments conducted on randomly generated data sets are presented and analyzed showing the effectiveness of the solution algorithm for the proposed network.  相似文献   

19.

The formation of manufacturing cells forms the backbone of designing a cellular manufacturing system. In this paper, we present a novel intelligent particle swarm optimization algorithm for the cell formation problem. The proposed solution method benefits from the advantages of particle swarm optimization algorithm (PSO) and self-organization map neural networks by combining artificial individual intelligence and swarm intelligence. Numerical examples demonstrate that the proposed intelligent particle swarm optimization algorithm significantly outperforms PSO and yields better solutions than the best solutions existed in the literature of cell formation. The application of the proposed approach is examined in a case problem where real data is utilized for cell reconfiguration of an actual company involved in agricultural manufacturing sector.

  相似文献   

20.
Cellular manufacturing systems (CMS) are used to improve production flexibility and efficiency. They involve the identification of part families and machine cells so that intercellular movement is minimized and the utilization of the machines within a cell is maximized. Previous research has focused mainly on cell formation problems and their variants; however, only few articles have focused on more practical and complicated problems that simultaneously consider the three critical issues in the CMS-design process, i.e., cell formation, cell layout, and intracellular machine sequence. In this study, a two-stage mathematical programming model is formulated to integrate the three critical issues with the consideration of alternative process routings, operation sequences, and production volume. Next, because of the combinatorial nature of the above model, an efficient tabu search algorithm based on a generalized similarity coefficient is proposed. Computational results from test problems show that our proposed model and solution approach are both effective and efficient. When compared to the mathematical programming approach, which takes more than 112 h (LINGO) and 1139 s (CPLEX) to solve a set of ten test instances, the proposed algorithm can produce optimal solutions for the same set of test instances in less than 12 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号