首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
This work presents the strategies applied to improve the performance of a spark ignition (SI) biogas engine. A diesel engine with a high compression ratio (CR) was converted to SI to be fueled with gaseous fuels. Biogas was used as the main fuel to increase knocking resistance of the blends. Biogas was blended with natural gas, propane, and hydrogen to improve fuel combustion properties. The spark timing (ST) was adjusted for optimum generating efficiencies close to the knocking threshold. The engine was operated on each blend at the maximum output power under stable combustion conditions. The maximum output power was measured at partial throttle limited by engine knocking threshold. The use of biogas in the engine resulted in a power derating of 6.25% compared with the original diesel engine (8 kW @ 1800 rpm). 50% biogas + 50% natural gas was the blend with the highest output power (8.66 kW @1800 rpm) and the highest generating efficiency (29.8%); this blend indeed got better results than the blends enriched with propane and hydrogen. Tests conditions were selected to achieve an average knocking peak pressure between 0.3 and 0.5 bar and COV of IMEP lower than 4% using 200 consecutive cycles as reference. With the blends of biogas, propane, and hydrogen, the output power obtained was just over 8 kW whereas the blends of biogas, natural gas, and hydrogen the output power were close to 8.6 kW. Moreover, a new approach to evaluate the maximum output power in gas engines is proposed, which does not depend on the engine % throttle but on the limit defined by the knocking threshold and cyclic variations.  相似文献   

2.
In this work, an experimental study on the performance and exhaust emissions of a commercial hydrogen fueled spark ignition engine (HFSIE) was performed at partially and full wide open throttle (50% and 100% WOT) positions. The engine is a four-stroke cycle six-cylinder, engine volume of 4.9 L, port fuel injection, hydrogen fueled SI engine with a bore of 102.1 mm, a stroke of 101.1 mm and a compression ratio of 13.5:1. The experiments were performed using 3 different spark plug gaps (SPG) (0.4, 0.6 and 0.8 mm), varied engine speeds of 1000–3000 rpm and two ignition timing values (10 and 15° CA BTDC) at 50% and 100% wide open throttle (WOT). SPG is a factor affecting the performance of the engine depending on the engine structure. Maximum power values were obtained at 0.6 mm SPG for both 50% and 100% WOT at ignition timing values of 10 and 15° CA BTDC. The maximum efficiency values were obtained with a 0.8 mm SPG at 50% WOT. At 100% WOT position, the maximum efficiency values were obtained with a 0.6 mm spark plug gap (SPG) at ignition timing values of 10 and 15° CA BTDC. A significant decrease in NO emission was observed using hydrogen for all WOT and SPGs.  相似文献   

3.
在点燃式发动机上分别燃用液化石油气和汽油,通过采集示功图并进行放热规律计算,对两种燃料在相似工况、相同过量空气系数下的燃烧特性进行对比分析。结果表明,在不改变样机结构和点火提前角的情况下,燃用液化石油气造成样机最大输出功率下降了7.64%。标定工况下,过量空气系数的变化对样机燃用汽油时的功率影响较大。两种燃料标定工况下的比热耗均随过量空气系数的增大而降低,但液化石油气降低的幅度较小。相似工况、相同过量空气系数下,相对于汽油,液化石油气的滞燃期短,燃烧持续期短,燃烧速度快。  相似文献   

4.
Conventional fossil fuels for combustion systems, such as gasoline and diesel, have a number of problems related to energy security and emissions. Alternative fuels, such as methane, hydrogen, and mixtures of these two gases, are being promoted as clean energy substitutes for primary fossil fuels. Natural gas (which consists mainly of methane) is one of the most promising of these fuels, providing lower cost, cleaner emissions and is direct applicable to existing combustion systems. However, the use of natural gas as fuel can adversely affect engine performance. Therefore, hydrogen is sometimes used as an additive, as its higher burning rate often leads to enhanced combustion. In this study, cycle simulation was used to numerically investigate the performance and emission characteristics of an engine employed primarily to power a generator, and fueled with methane and methane - hydrogen blends. Dominant parameters such as excess air ratio, spark timing, and volume percent of hydrogen content, were investigated as independent variables. The fundamental effect of hydrogen on methane combustion was investigated for a fixed excess air ratio of 1.2 and a spark timing of 14CA(Crank Angle) BTDC (Before Top Dead Center), with an accompanying reduction in ignition delay. By varying the excess air ratio, hydrogen was demonstrated to play an important role in extending the lean operating limit. The DOE (Design of Experiment) method was applied to study MBT (Maximum Brake Torque) spark timing for various excess air ratios and hydrogen contents. When MBT spark timing was employed, maximum brake torque could be achieved under leaner burning conditions by increasing the hydrogen content.  相似文献   

5.
With rapid depletion of petroleum resources, researchers are investigating alternate fuels to meet global transportation energy demand. Gaseous fuels such as compressed natural gas (CNG) and hydrogen are of special interest because of their cleaner combustion characteristics compared to liquid petroleum based fossil fuels. However both these gaseous fuels have some technical issues when they are used as stand-alone alternate fuel in conventional spark ignition (SI) engines. CNG suffers from lower energy density and narrow flammability range whereas backfiring tendency is highly pronounced in hydrogen fueled engines. Hydrogen enriched compressed natural gas (HCNG) mixtures are observed to be good alternative to these individual fuels since these mixtures do not pose the issues experienced by the constituent fuels i.e. CNG and hydrogen. In this study, experiments were conducted in a spark ignited gas engine using various compositions of HCNG mixtures having 0, 10, 20, 30, 50, 70 and 100% (v/v) hydrogen fraction. The performance and combustion characteristics of these test fuels were compared with that of baseline CNG, in order to find an optimum HCNG mixture composition for a single cylinder gas engine. Results obtained showed that 30HCNG mixture delivered superior engine performance compared to other HCNG mixtures and baseline CNG, which is in sharp contrast to 15HCNG being advocated globally.  相似文献   

6.
Varying proportions of hydrogen and carbon monoxide (synthesis gas) have been investigated as a spark ignition (SI) engine fuel in this paper. It is important to understand how various synthesis gas compositions effect important SI combustion fundamentals, such as knock and burn duration, because in synthesis gas production applications, the compositions can vary significantly depending on the feedstock and production method.A single cylinder cooperative fuels research (CFR) engine was used to investigate the knock and combustion characteristics of three blends of synthesis gas (H2/CO ratio); 1) 100/0, 2) 75/25, and 3) 50/50, by volume. These blends were tested at three compression ratios (6:1, 8:1, and 10:1), and three equivalence ratios (0.6, 0.7, and 0.8).It was revealed that the knock limited compression ratio (KLCR) of a H2/CO mixture increases with increasing CO fraction, for a given spark timing. For a given equivalence ratio and spark timing, a 50%/50% H2/CO mixture produced a KLCR of 8:1 compared to a 100% H2 condition, which produced a KLCR of 6:1. The burn duration and ignition lag is also increased with increasing CO fraction. The results from this work are important for those considering using synthesis gas as a fuel in SI engines. It reveals that although CO is a slow burning fuel, higher CO fractions in synthesis gas can be beneficial, because of its increased resistance to knock, which gives it the potential of producing higher indicated efficiencies through the utilization of an engine with a higher compression ratio.  相似文献   

7.
Exponentially increasing energy demand and stricter emission legislations have motivated researchers to explore alternative fuels and advanced engine technologies, which are more efficient and environment friendly. In last two decades, hydrogen has emerged as promising alternative fuel for internal combustion (IC) engines and vehicles. For gaseous fuels, laser ignition (LI) has emerged as a novel ignition technique due to its superior characteristics, leading to improved combustion, engine performance and emission characteristics. Numerous advantages of LI system such as flexibility of plasma location, lower NOx emissions and capability of igniting ultra-lean fuel–air mixture makes LI system superior compared to conventional spark ignition (SI) system. This study experimentally compares particulate emissions from hydrogen fueled engine ignited by LI and SI systems. Experiments were performed in a constant speed engine prototype, which was suitably modified to operate on gaseous fuels using both LI as well as SI systems. Particulate were characterized using engine exhaust particle sizer (EEPS) spectrometer. Results showed that LI engine resulted in relatively higher particulate number concentration as well as particulate mass compared to SI engine. In both ignition systems, particulate emissions increased with increasing engine load however rate of increase was relatively higher in LI system. Relatively larger count mean diameter (CMD) of particulate emitted from SI engine compared to LI engine was another important observation. This showed emission of relatively smaller particles in larger numbers from LI engine, compared to baseline SI engine.  相似文献   

8.
The increase in the compression ratio reduces the fuel consumption and improves the performance. These effects of compression ratio could be observed in all of the engines, such as compression or spark ignition engines. Moreover, due to the compression ratio constraint based on the knocking phenomenon in spark ignition engines, there will always be an optimal compression ratio, which is one of the most fundamental factors in engine design. The optimum compression ratio could be achieved depending on the type of fuel, but in the case of bi-fuel engines, since the nature of each fuel is different, the design must be relatively optimal for both fuels. In this work, by using the VCR (variable compression ratio) strategy, the bi-fuel EF7 engine performance, combustion, and emissions were investigated in different compression ratios when the engine uses gasoline or HCNG (hydrogen enriched compressed natural gas) as fuel. The results revealed that by changing the compression ratio from 11.05 (actual compression ratio of engine) to 11.80 in HCNG mode, an increase of 13% in power could be achieved. Also CO formation, at the compression ratio of 11.80, was slightly lower (7%) than the compression ratio of 11.05. In addition, by reducing the compression ratio from 11.05 to 10.50 in gasoline mode, there was a significant increase in emissions; that was 44% for the NOx and 16% for the CO, which could be one of the limiting factors of the advance in spark timing. Moreover, due to the VCR strategy and the significant optimization of the compression ratio, the combinatory method of VCR – HCNG can be used as an effective method for the bi-fuel engines in order to improve the performance and reduce emissions.  相似文献   

9.
以发动机4000r/min、节气门开度35%为试验工况,对纯汽油及不同掺混体积分数丙酮-丁醇-乙醇(acetone-butanol-ethanol,ABE)与汽油混合物开展了不同点火提前角和喷油量的试验研究。分析了不同ABE混合比、点火提前角和过量空气系数对发动机性能的影响,并对每种燃料发动机最大功率工况的性能参数进行了比较。结果表明:点火提前角和过量空气系数相同时,混合燃料中ABE含量越高,燃油流量越大,发动机功率越大,有效热效率越高;燃油流量的总热量增大和热-功转换效率提高是促使发动机功率增大的主要原因;随ABE掺混比增加,NO比排放明显降低,CO比排放略有增加,碳氢化合物比排放先增后减。浓混合气工况增加ABE含量比在当量空燃比状态下增加ABE含量,发动机的有效热效率增大更明显,发动机的NO比排放降低更加明显。研究表明高速汽油机掺混ABE燃料具有较好的应用前景。  相似文献   

10.
Environmental concerns and depletion in petroleum resources have forced researchers to concentrate on finding renewable alternatives to conventional petroleum fuels. Hydrogen is thought to be a major energy resource of the future due to its clean burning nature and eventual availability from renewable sources. Hydrogen is widely regarded as a promising transportation fuel because it is clean and renewable.The authors manufactured a high accuracy heavy-duty variable compression ratio single cylinder engine to investigate its performance and emissions characteristics. The test engine was run at 1400 rpm with a compression ratio of 8. Spark timing was set to MBT (minimum spark advance for best torque). This paper investigates the effects of hydrogen enriched LPG fueled engine on exhaust emission, thermal efficiency and performance.  相似文献   

11.
This research evaluates the effect of the equivalence ratio on knocking tendency in two Spark Ignition (SI) engines fueled with gaseous fuels. A Lister Petter TR2 Diesel engine (TR2) converted to SI was used to evaluate the equivalence ratio effect when the engine was fueled with fuel blends of biogas, natural gas, propane, and hydrogen. A Cooperative Fuel Research (CFR) engine was used to study the effect of equivalence ratio on the Critical Compression Ratio (CCR) which is a metric to evaluate the knocking tendency of gaseous fuels. In both engines, the tests were conducted using the knocking threshold as the engine limit operation to quantify the effect of the equivalence ratio on knocking tendency. Experimental results in the CFR engine revealed that a lean mixture reduces the knocking tendency allowing to operate the CFR engine at higher CCR. In contrast, the effect of the equivalence ratio on the knocking tendency in the TR2 engine was different since leaner mixtures increased the engine knocking tendency. This tendency was caused by the increase in the % throttle which increased the mixture pressure at the end of the compression stroke. The high knocking tendency to lean mixtures forces to reduce the output power to find the knocking threshold for all fuel blends.  相似文献   

12.
This paper presents the performance results of a 5.9 kW stationary diesel engine which was converted into spark ignition mode and run on compressed natural gas (CNG), methane enriched biogas (Bio-CNG) and biogas produced from biomethanation of jatropha and pongamia oil seed cakes. The performance of the engine with 12.65 compression ratio was evaluated at 30°, 35° and 40° ignition advance of TDC. The maximum brake power produced by the engine was found at ignition advance of 35° TDC for all the tested fuels. In comparison to diesel as original fuel, the power deteriorations of the engine was observed to be 31.8%, 35.6% and 46.3% on compressed natural gas, methane enriched biogas and raw biogas, respectively, due to its conversion from CI to SI mode. The methane enriched biogas showed almost similar engine performance as compared to compressed natural gas in terms of brake power output, specific gas consumption and thermal efficiency.  相似文献   

13.
稀燃天然气发动机燃烧循环变动影响因素研究   总被引:1,自引:0,他引:1  
通过对一台点燃式多点电喷稀燃天然气发动机进行试验,获得了不同工况下的平均指示压力循环变动系数,以此为基础研究了燃空当量比、节气门开度、转速及点火时刻对稀燃天然气发动机燃烧循环变动的影响趋势。结果表明:混合气燃空当量比越小,燃烧循环变动越明显,当燃空当量比降低到一定值时,平均指示压力循环变动系数的增长会突然加大;节气门开度越小燃烧循环变动越明显,节气门开度小于30%后,其对燃烧循环变动影响更加明显;燃烧循环变动量随转速上升有增加的趋势,在高转速工况下燃烧循环变动的加强尤其明显;在工况一定的条件下存在一个最优的点火时刻可使稀燃天然气发动机的燃烧循环变动最小。  相似文献   

14.
In recent years, efforts have been directed towards environmentally freindly sources of alternative fuels for internal combustion engines. This paper investigates combustion characteristics and performance of natural gas in an unmodified compression ignition engine using diesel fuel pilot injection. The factors influencing knock limits in dual fuel gas engines have been identified. This report is confined to experimental work in a naturally aspirated dual gas engine and the results obtained were compared with the diesel fueled test engine. Cylinder pressure diagrams recorded indicate longer ignition delay and burning rates with an increased pressure variation.  相似文献   

15.
Hydrogen is seen as one of the important energy vectors of the next century. Hydrogen as an energy carrier, provides the potential for a sustainable development particularly in the transportation sector. A hydrogen fueled engine has the potential for substantially cleaner emissions than other internal combustion engines. Other benefits arise from the wide flammability limits and the high flame propagation speed, both allowing better efficiency. The Laboratory of Transporttechnology (University of Ghent) converted a GM/Crusader V8 SI engine for hydrogen use, to be built in a city bus. A sequential timed multipoint injection system was implemented. Attention is directed towards special characteristics related to the use of hydrogen as a fuel in IC engines: ignition properties (smaller spark plug gap), injection pressure (dependent on the means of storage: compressed gas or liquid), quality of the lubricating oil (due to higher blow-by volumes, a substantial amount of hydrogen is present in the crankcase), oxygen sensors (very lean operating conditions). The advantages and disadvantages of a power regulation by changing the air to fuel ratio (as for diesel engines), as compared to throttle regulation (SI engines) are judged.  相似文献   

16.
Simultaneous injection of n‐butanol and gasoline through a new system of two injectors directing the sprays towards the back of the intake valve in a spark‐ignition engine was tried in lieu of injecting a blend of these fuels through a single injector. This system avoids the problem of phase separation, which is generally faced during the use of alcohol‐gasoline blends. Experiments were conducted on a spark‐ignition engine with this dual injection system using a fuel ratio of 1:1 (B50S) on the mass basis. High‐speed photographs indicated that the sprays from the injectors did not interfere till they reached the intake valve. Comparisons were made with pre‐blended butanol‐gasoline (B50) and neat (100%) gasoline at the best spark timing. All injection and spark parameters were controlled using a real time engine controller. Neat n‐butanol (B100) was superior only near full throttle with improved efficiency of the engine of about 1.2% (absolute). Heat release rates were observed to be higher and more advanced with B100 at wide open throttle. However, a reverse of this trend was observed at the throttle position of 15%. NO emission was also lower by 30% with B100 at wide open throttle as compared with gasoline. However, a small increase in carbon monoxide (CO) levels was observed because of lower post combustion temperatures as compared with gasoline and B50S. Simultaneous injection reduced hydrocarbon (HC) emissions by 13% to 50% as compared with B50 (blended fuel). HC emissions with gasoline and B50S were similar. Nitric oxide (NO) emission was lower with B50S as compared with gasoline; however it was higher than B50 because of better combustion. On the whole, the developed dual injection system was superior to the conventional method of blending in terms of performance, emissions and ability to change the fuel ratio as needed. B50S is suitable at all throttle positions, whereas B100 shows benefits at full throttle conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
随着经济和社会的高速发展,车辆的有害排放物给环境造成了严重的危害.氢气是可再生能源,作为车用发动机的替代燃料,排放的唯一有害气体是NO.但是,氢气的燃烧扩散速度太快,形成爆震燃烧的几率比汽油大得多,爆震问题是设计氢气燃料发动机要考虑的最重要的因素之一,在分析和试验的基础上,为控制氢发动机的爆震提供了参考条件.  相似文献   

18.
This study investigated the engine performance and emissions of a supercharged engine fueled by hydrogen (H2), and three other hydrogen-containing gaseous fuels such as primary fuels, and diesel as pilot fuel in dual-fuel mode. The energy share of primary fuels was about 90% or more, and the rest of the energy was supplied by diesel fuel. The hydrogen-containing fuels tested in this study were 13.7% H2-content producer gas, 20% H2-content producer gas and 56.8% H2-content coke oven gas (COG). Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the pilot injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Better thermal efficiency was obtained with the increase in H2 content in the fuels, and neat H2 as a primary fuel produced the highest thermal efficiency. The fuel-air equivalence ratio was decreased with the increase in H2 content in the fuels to avoid knocking. Thus, neat H2-operation produced less maximum power than other fuels, because of much leaner operations. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. The emissions of CO and HC with neat H2-operation were 98-99.9% and NOx about 85-90% less than other fuels.  相似文献   

19.
《Energy Conversion and Management》2005,46(13-14):2317-2333
A quasi-dimensional spark ignition (SI) engine cycle model is used to predict the cycle, performance and exhaust emissions of an automotive engine for the cases of using gasoline and LPG. Governing equations of the mathematical model mainly consist of first order ordinary differential equations derived for cylinder pressure and temperature. Combustion is simulated as a turbulent flame propagation process and during this process, two different thermodynamic regions consisting of unburned gases and burned gases that are separated by the flame front are considered. A computer code for the cycle model has been prepared to perform numerical calculations over a range of engine speeds and fuel–air equivalence ratios. In the computations performed at different engine speeds, the same fuel–air equivalence ratios are selected for each fuel to make realistic comparisons from the fuel economy and fuel consumption points of view. Comparisons show that if LPG fueled SI engines are operated at the same conditions with those of gasoline fueled SI engines, significant improvements in exhaust emissions can be achieved. However, variations in various engine performance parameters and the effects on the engine structural elements are not promising.  相似文献   

20.
The objective of this study is to evaluate the power, efficiency and emissions of an electronic-controlled single-cylinder engine fueled with pure natural gas and natural gas–hydrogen blends, respectively. Replacing the nature gas with hydrogen/methane blend fuels was found to have a significant influence on engine performance. The effects of excess air ratio and spark timing were discussed. The results show that under certain engine conditions the maximum cylinder gas pressure, maximum heat release rate increased with the increase of hydrogen fraction. The increase of hydrogen fraction in the blends contributed to the increase of NOx and the decrease of HC and CO. The brake specific fuel consumption decreased with the increase of hydrogen fraction. Using HCNG at relatively leaner fuel–air mixtures and retarded spark timing totally improved the engine emissions without incurring the performance penalty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号