首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 698 毫秒
1.
研究了以最大完工时间为目标的流水线调度问题,使用万有引力算法求解调度问题,提出了一种最大排序规则,利用物体间各个位置分量值存在的大小次序关系,并结合随机键编码的方法产生,将物体的连续位置转变成了一个可行的调度方案;提出了一种边界变异的策略使得越界的物体不再聚集在边界上,而是分布在边界附近的可行空间内,从而增加种群的多样性;结合交换算子和插入算子提出了一种新的局部搜索算法,有效地避免了算法陷入局部最优值,进一步提高了解的质量.最后证明了算法的收敛性,并且计算了算法的时间复杂度和空间复杂度,仿真实验说明了所得算法的有效性.  相似文献   

2.
This paper presents a new, carefully designed algorithm for five bi-objective permutation flow shop scheduling problems that arise from the pairwise combinations of the objectives (i) makespan, (ii) the sum of the completion times of the jobs, and (iii) both, the weighted and non-weighted total tardiness of all jobs. The proposed algorithm combines two search methods, two-phase local search and Pareto local search, which are representative of two different, but complementary, paradigms for multi-objective optimization in terms of Pareto-optimality. The design of the hybrid algorithm is based on a careful experimental analysis of crucial algorithmic components of these two search methods. We compared our algorithm to the two best algorithms identified, among a set of 23 candidate algorithms, in a recent review of the bi-objective permutation flow-shop scheduling problem. We have reimplemented carefully these two algorithms in order to assess the quality of our algorithm. The experimental comparison in this paper shows that the proposed algorithm obtains results that often dominate the output of the two best algorithms from the literature. Therefore, our analysis shows without ambiguity that the proposed algorithm is a new state-of-the-art algorithm for the bi-objective permutation flow-shop problems studied in this paper.  相似文献   

3.
This paper investigates the limited-buffer permutation flow shop scheduling problem (LBPFSP) with the makespan criterion. A hybrid variable neighborhood search (HVNS) algorithm hybridized with the simulated annealing algorithm is used to solve the problem. A method is also developed to decrease the computational effort needed to implement different types of local search approaches used in the HVNS algorithm. Computational results show the higher efficiency of the HVNS algorithm as compared with the state-of-the-art algorithms. In addition, the HVNS algorithm is competitive with the algorithms proposed in the literature for solving the blocking flow shop scheduling problem (i.e., LBPFSP with zero-capacity buffers), and finds 54 new upper bounds for the Taillard's benchmark instances.  相似文献   

4.
The problem of scheduling in permutation flow shop with the objective of minimizing the maximum completion time, or makespan, is considered. A new ant colony optimization algorithm is developed for solving the problem. A novel mechanism is employed in initializing the pheromone trails based on an initial sequence. Moreover, the pheromone trail intensities are limited between lower and upper bounds which change dynamically. When a complete sequence of jobs is constructed by an artificial ant, a local search is performed to improve the performance quality of the solution. The proposed ant colony algorithm is applied to Taillard’s benchmark problems. Computational experiments suggest that the algorithm yields better results than well-known ant colony optimization algorithms available in the literature.  相似文献   

5.
提出了一种新的求解置换flowshop调度问题的启发式算法。问题的目标是:在满足约束条件的前提下使得调度的makespan尽可能地小。定义了一种新的邻域结构。给出了跳坑策略以跳出局部最优解并且将搜索引向有希望的方向。计算了一组著名的问题实例。计算结果表明,算法的优度高于一种改进的遗传算法。  相似文献   

6.
In this study, three new meta-heuristic algorithms artificial immune system (AIS), iterated greedy algorithm (IG) and a hybrid approach of artificial immune system (AIS-IG) are proposed to minimize maximum completion time (makespan) for the permutation flow shop scheduling problem with the limited buffers between consecutive machines. As known, this category of scheduling problem has wide application in the manufacturing and has attracted much attention in academic fields. Different from basic artificial immune systems, the proposed AIS-IG algorithm is combined with destruction and construction phases of iterated greedy algorithm to improve the local search ability. The performances of these three approaches were evaluated over Taillard, Carlier and Reeves benchmark problems. It is shown that the AIS-IG and AIS algorithms not only generate better solutions than all of the well-known meta heuristic approaches but also can maintain their quality for large scale problems.  相似文献   

7.
We propose a constructive and an iterated local search heuristic for minimizing the makespan in the non-permutation flow shop scheduling problem. Both heuristics are based on the observation that optimal non-permutation schedules often exhibit a permutation structure with a few local job inversions. In computational experiments we compare our heuristics to the best heuristics for finding non-permutation and permutation flow shop schedules, and evaluate the reduction in makespan and buffer size that can be achieved by non-permutation schedules.  相似文献   

8.
Flow shop problems as a typical manufacturing challenge have gained wide attention in academic fields. In this paper, we consider a bi-criteria permutation flow shop scheduling problem, where the weighted mean completion time and the weighted mean tardiness are to be minimized simultaneously. Due to the complexity of the problem, it is very difficult to obtain optimum solution for this kind of problems by means of traditional approaches. Therefore, a new multi-objective shuffled frog-leaping algorithm (MOSFLA) is introduced for the first time to search locally Pareto-optimal frontier for the given problem. To prove the efficiency of the proposed algorithm, various test problems are solved and the reliability of the proposed algorithm, based on some comparison metrics, is compared with three distinguished multi-objective genetic algorithms, i.e. PS-NC GA, NSGA-II, and SPEA-II. The computational results show that the proposed MOSFLA performs better than the above genetic algorithms, especially for the large-sized problems.  相似文献   

9.
针对制造型企业普遍存在的流水车间调度问题,建立了以最小化最迟完成时间和总延迟时间为目标的多目标调度模型,并提出一种基于分解方法的多种群多目标遗传算法进行求解.该算法将多目标流水车间调度问题分解为多个单目标子问题,并分阶段地将这些子问题引入到算法迭代过程进行求解.算法在每次迭代时,依据种群的分布情况选择各子问题的最好解及与其相似的个体分别为当前求解的子问题构造子种群,通过多种群的进化完成对多个子问题最优解的并行搜索.通过对标准测试算例进行仿真实验,结果表明所提出的算法在求解该问题上能够获得较好的非支配解集.  相似文献   

10.
面对日益增长的大规模调度问题,新型算法的开发越显重要.针对置换流水车间调度问题,提出了一种基于强化学习Q-Learning调度算法.通过引入状态变量和行为变量,将组合优化的排序问题转换成序贯决策问题,来解决置换流水车间调度问题.采用所提算法对OR-Library提供Flow-shop国际标准算例进行测试,并与已有的一些算法对比,结果表明算法的有效性.  相似文献   

11.
The permutation flow shop scheduling is a well-known combinatorial optimization problem that arises in many manufacturing systems. Over the last few decades, permutation flow shop problems have widely been studied and solved as a static problem. However, in many practical systems, permutation flow shop problems are not really static, but rather dynamic, where the challenge is to schedule n different products that must be produced on a permutation shop floor in a cyclical pattern. In this paper, we have considered a make-to-stock production system, where three related issues must be considered: the length of a production cycle, the batch size of each product, and the order of the products in each cycle. To deal with these tasks, we have proposed a genetic algorithm based lot scheduling approach with an objective of minimizing the sum of the setup and holding costs. The proposed algorithm has been tested using scenarios from a real-world sanitaryware production system, and the experimental results illustrates that the proposed algorithm can obtain better results in comparison to traditional reactive approaches.  相似文献   

12.
In this paper a three steps heuristic for the permutation flow shop problem is proposed. The objective is to minimize the maximum time for completing the jobs, or the makespan. The first two steps are inspired by the NEH heuristic, to which a new tie breaking strategy has been incorporated in the insertion phase. Furthermore, the reversibility property of the problem dealt with is taken as a tool for improving the obtained solution. The third step consists of an iterated local search procedure with an embedded local search which is a variant of the non exhaustive descent algorithm. The statistical analysis of the results shows the effectiveness of the proposed procedures.  相似文献   

13.
为了追求节能减排与净利润最大化,建立一种置换流水车间订单接受与调度模型。禁忌搜索是一类启发式全局搜索算法,传统禁忌搜索对初始解依赖较大,没有对考虑能效的置换流水车间调度问题进行更深入的优化。鉴于问题的复杂性,提出了一种节能混合禁忌搜索算法,结合了NEH构造启发式算法的优势,并在该算法中设计了订单接受与拒绝编码方式、能耗调整与交货期配置策略。最后采用大量随机实例对性能进行分析。实验结果表明,通过上述改进,改善了算法的全局搜索能力与解决复杂模型的寻优能力,节能混合禁忌搜索较单一算法而言性能更优,可以有效增加企业总净利润,降低能源消耗。  相似文献   

14.
潘玉霞  谢光  肖衡 《计算机应用》2014,34(2):528-532
分别在有等待和无等待的情况下,深入分析了带有启动时间的批量调度问题,以最小化最大完成时间为目标,提出了两种离散和声搜索算法。针对算法本质连续而问题离散的矛盾,对和声搜索算法进行改进。首先提出了基于工序的编码方式,采用inver-over和重组两种离散算子产生候选解的进化机制;并利用改进的NEH(Nawaz-Enscore-Ham)方法进行初始化,产生的高质量和多样化的初始种群有效地指导了算法的进化方向,提高收敛速度;最后将一种简单而有效的局部邻域搜索方法嵌入到和声搜索算法中以增强其局部搜索能力。仿真实验和比较结果表明了所提算法的有效性。  相似文献   

15.
This paper presents a novel discrete differential evolution (DDE) algorithm for solving the no-wait flow shop scheduling problems with makespan and maximum tardiness criteria. First, the individuals in the DDE algorithm are represented as discrete job permutations, and new mutation and crossover operators are developed based on this representation. Second, an elaborate one-to-one selection operator is designed by taking into account the domination status of a trial individual with its counterpart target individual as well as an archive set of the non-dominated solutions found so far. Third, a simple but effective local search algorithm is developed to incorporate into the DDE algorithm to stress the balance between global exploration and local exploitation. In addition, to improve the efficiency of the scheduling algorithm, several speed-up methods are devised to evaluate a job permutation and its whole insert neighborhood as well as to decide the domination status of a solution with the archive set. Computational simulation results based on the well-known benchmarks and statistical performance comparisons are provided. It is shown that the proposed DDE algorithm is superior to a recently published hybrid differential evolution (HDE) algorithm [Qian B, Wang L, Huang DX, Wang WL, Wang X. An effective hybrid DE-based algorithm for multi-objective flow shop scheduling with limited buffers. Computers & Operations Research 2009;36(1):209–33] and the well-known multi-objective genetic local search algorithm (IMMOGLS2) [Ishibuchi H, Yoshida I, Murata T. Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Transactions on Evolutionary Computation 2003;7(2):204–23] in terms of searching quality, diversity level, robustness and efficiency. Moreover, the effectiveness of incorporating the local search into the DDE algorithm is also investigated.  相似文献   

16.
Though scheduling problems have been largely investigated by literature over the last 50 years, this topic still influences the research activity of many experts and practitioners, especially due to a series of studies which recently emphasized the closeness between theory and industrial practice. In this paper the scheduling problem of a hybrid flow shop with m stages, inspired to a truly observed micro-electronics manufacturing environment, has been investigated. Overlap between jobs of the same type, waiting time limit of jobs within inter-stage buffers as well as machine unavailability time intervals represent just a part of the constraints which characterize the problem here investigated. A mixed integer linear programming model of the problem in hand has been developed with the aim to validate the performance concerning the proposed optimization technique, based on a two-phase metaheuristics (MEs). In the first phase the proposed ME algorithm evolves similarly to a genetic algorithm equipped with a regular permutation encoding. Subsequently, since the permutation encoding is not able to investigate the overall space of solutions, a random search algorithm equipped with an m-stage permutation encoding is launched for improving the algorithm strength in terms of both exploration and exploitation. Extensive numerical studies on a benchmark of problems, along with a properly arranged ANOVA analysis, demonstrate the statistical outperformance of the proposed approach with respect to the traditional optimization approach based on a single encoding. Finally, a comprehensive comparative analysis involving the proposed algorithm and several metaheuristics developed by literature demonstrated the effectiveness of the dual encoding based approach for solving HFS scheduling problems.  相似文献   

17.
为更有效地解决以最大完工时间最小化为目标的置换流水车间调度问题,提出了一种自适应混合粒子群算法(SHPSO)。该算法结合Q学习设计了参数自适应更新策略,以平衡算法的探索和开发;同时引入粒子停滞判断方法,使用平局决胜机制和Taillard加速算法改进基于迭代贪婪的局部搜索策略,对全局极值进行局部搜索,帮助粒子跳出局部最优。实验结果表明,SHPSO算法取得的平均相对百分偏差(RPDavg)对比其他四种改进PSO算法至少下降了83.2%,在求解质量上具有明显优势。  相似文献   

18.
This paper presents a hybrid discrete differential evolution (HDDE) algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion, which is not so well studied. The no-idle condition requires that each machine must process jobs without any interruption from the start of processing the first job to the completion of processing the last job. A novel speed-up method based on network representation is proposed to evaluate the whole insert neighborhood of a job permutation and employed in HDDE, and moreover, an insert neighborhood local search is modified effectively in HDDE to balance global exploration and local exploitation. Experimental results and a thorough statistical analysis show that HDDE is superior to the existing state-of-the-art algorithms by a significant margin.  相似文献   

19.
In this paper, an effective hybrid discrete differential evolution (HDDE) algorithm is proposed to minimize the maximum completion time (makespan) for a flow shop scheduling problem with intermediate buffers located between two consecutive machines. Different from traditional differential evolution algorithms, the proposed HDDE algorithm adopted job permutation to represent individuals and applies job-permutation-based mutation and crossover operations to generate new candidate solutions. Moreover, a one-to-one selection scheme with probabilistic jumping is used to determine whether the candidates will become members of the target population in next generation. In addition, an efficient local search algorithm based on both insert and swap neighborhood structures is presented and embedded in the HDDE algorithm to enhance the algorithm’s local searching ability. Computational simulations and comparisons based on the well-known benchmark instances are provided. It shows that the proposed HDDE algorithm is not only capable to generate better results than the existing hybrid genetic algorithm and hybrid particle swarm optimization algorithm, but outperforms two recently proposed discrete differential evolution (DDE) algorithms as well. Especially, the HDDE algorithm is able to achieve excellent results for large-scale problems with up to 500 jobs and 20 machines.  相似文献   

20.
This paper addresses a sub-population based hybrid monkey search algorithm to solve the flow shop scheduling problem which has been proved to be non-deterministic polynomial time hard (NP-hard) type combinatorial optimization problems. Minimization of makespan and total flow time are the objective functions considered. In the proposed algorithm, two different sub-populations for the two objectives are generated and different dispatching rules are used to improve the solution quality. To the best of our knowledge, this is the first application of monkey search algorithm to solve the flow shop scheduling problems. The performance of the proposed algorithm has been tested with the benchmark problems addressed in the literature. Computational results reveal that the proposed algorithm outperforms many other heuristics and meta-heuristics addressed in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号