首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
宾涛  曹有名  张伟东 《塑料工业》2020,48(2):64-68,73
用机械共混法制备了聚氯乙烯(PVC)/纳米硫酸钡(Nano-BaSO4)/丁腈橡胶(NBR)复合材料。通过压制成型制备标准試样,使用万能试验机测试复合材料拉伸强度、撕裂强度、悬臂梁缺口冲击强度,高阻抗分析仪测试表面电阻率,扫描电子显微镜(SEM)及热重分析仪(TG)进行微观形貌及热重分析,探究了NBR、Nano-BaSO4的加入量对复合材料力学性能、导电性能、热稳定性以及微观结构的影响。结果表明,NBR和Nano-BaSO4可协同增韧PVC,随着NBR和Nano-BaSO4加入量的增大,PVC复合体系的断裂伸长率、悬臂梁缺口冲击强度先增加后减少;复合体系的表面电阻率随着NBR加入量的增大而逐渐下降,随着Nano-BaSO4加入量的增大而不断上升;TG结果表明,NBR能改善PVC体系的热稳定性;SEM结果表明,NBR与PVC相容性良好。  相似文献   

2.
Cassava starch-filled natural rubber (NR) composites were prepared by using direct blending and co-coagulation method. The effects of two different method and cassava starch loading on morphology, mechanical properties and thermal properties of cassava starch/NR composites were studied. X-ray diffraction results and scanning electron microscopy images proved that co-coagulation method promotes better dispersion of cassava starch than direct blending method. The composites prepared by co-coagulation method exhibited higher values of tensile strength, tear strength, hardness, and thermal stability. The optimum value of tensile strength and tear strength of cassava starch/NR composites were achieved at a 10 phr cassava starch loading.  相似文献   

3.
The effects of filler particle size of poly(vinyl chloride)/chicken eggshell powder (PVC/ESP) composites on the processing, tensile properties, morphology and thermal degradation were investigated. The mixing of composites was done using Rheomix internal mixer. The processing torque of PVC/ESP composite at a particle of 0.2 μm exhibits lower processing torque compared to that at a particle size of 7 μm due to the dispersive resistance from larger ESP filler particles. Good interfacial adhesion exists between the filler and matrix in composites prepared via a filler particle size of 0.2 μm, which has improved the tensile strength and modulus of PVC/ESP composite compared to a filler particle size of 7 μm as justified from FESEM images on the tensile fracture surface of the composites. Thermogravimetric analysis results show that the filler particle size of 0.2 μm composite exhibits higher thermal stability compared to the filler particle size of 7 μm composite.  相似文献   

4.
Poly(vinyl chloride) (PVC)/layered double hydroxide (LDH) composites and PVC/poly(methyl methacrylate) (PMMA)/LDH composites were prepared via solution intercalation into PVC using both unmodified and organo‐modified LDHs and variable‐molecular‐weight PMMA as additional components. The LDH dispersion was investigated using X‐ray diffraction analysis and electron microscopy in scanning and transmission modes. Spotlight fourier transform infrared (FTIR) chemical imaging analysis was also used to obtain a deeper insight into the dispersion of polymer phases and LDH segregation. Thermal properties were determined using thermogravimetric analysis and differential scanning calorimetry; moreover, a preliminary investigation of mechanical properties in tensile mode and evaluation of the Vicat softening temperature were carried out. The morphological analysis of PVC/LDH and PVC/PMMA/LDH composites evidenced in both cases the presence of disordered micro‐aggregates with loss of the LDH crystallographic symmetry depending on the amount and molecular weight of PMMA. In particular, in the case of PVC/PMMA/LDH composites, the FTIR imaging analysis showed that PMMA mostly segregated in the LDH phase. However, even if the degree of LDH dispersion was not elevated (micro‐aggregates with disordered structures and size ranging from 0.5 up to 11 µm were evidenced), thermal stability and mechanical properties of the composites were improved with a synergic effect of PMMA and LDH. © 2013 Society of Chemical Industry  相似文献   

5.
PVC/Poly(ε‐caprolactone) (PCL)/organophilic‐montmorillonite (OMMT) and PVC/Polylactide (PLA)/OMMT nanocomposites were prepared by a two‐step process. PCL/OMMT and PLA/OMMT master batches were prepared by melt blending using a two‐roller mill first, and then they were blended with PVC via extrusion. PVC/OMMT nanocomposites were also prepared using a two‐roller mill. Morphology, mechanical properties, and thermal stability were investigated. The formation of exfoliated or intercalated nanocomposites was confirmed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Only the PVC/PCL/OMMT nanocomposite showed both higher tensile strength and stiffness than unfilled PVC. Atomic force microscopy (AFM) indicated dependency of this behavior not only on the clay dispersion, but also on the adhesion between the OMMT and the polymer matrix. Furthermore, scanning electron microscopy (SEM) showed that the large plastic deformation of the PVC/PCL matrix also contributed to the strength increase of the PVC nanocomposites. The effect of PCL/OMMT on the improvement of the thermal stability of PVC was remarkable while the effect of PLA/OMMT was moderate. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers.  相似文献   

6.
通讨原位插层法制备聚(甲苯丙烯酸甲酯一丙烯酸甲酯)有机化蒙脱十「P(MMA-MA)/OMMT}纳米复合材料,并用其对聚氯乙烯(PVC)讲行共混改性。通讨扫描电镜(SEM)热失重分析(TGA)、动杰力学分析(DMA)拉伸和冲击等力学性能测试研究了共混物的两相相容性、热稳定性及力学性能。结果表明:共混体系两相间有很奸的相容性;随着纳米复合材料添加量的增加,共混体系的耐热性能、储能模量、玻璃化温度和力学性能逐渐增加。当纳米复合材料与PVC共混比达到20/100时,共混体系在10%失重率下的失重温度比纯PVC捍高了17.4℃,玻璃化温度比纯PVC捍高了4.7℃。当纳米复合材料与PVC共混比达到30/100时,体系的综合力学性能最奸,冲击强度和拉伸强度分别较纯PVC捍高了21. 1%和34.7%。  相似文献   

7.
Low density polyethylene (LDPE)/modified water hyacinth fiber (WHF) composites have been prepared by melt blending. All the composites were characterized by tensile test, differential scanning calorimetry (DSC), water absorption behaviour, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The results indicated that LDPE/WHF composites with NCO-polyol as a coupling agent show higher values of tensile strength, Young's modulus and water absorption resistance but lower elongation at break than LDPE/WHF composites without NCO-polyol. The micrographs of SEM showed that the WHF were more widely dispersed in the LDPE matrix with the addition of the NCO-polyol as a coupling agent. It was also found that the modified WHF offers better thermal stability in the LDPE/WHF composites than unmodified WHF.  相似文献   

8.
Nanosilica particles are functionalized by in situ surface‐modification with trimethyl silane and vinyl silane. Resultant reactive nanosilica (coded as RNS) contains double bonds and possesses good compatibility with vinyl chloride (VC) and polyvinyl chloride (PVC). This makes it feasible for RNS to copolymerize with VC generating RNS/PVC composites via in situ suspension polymerization. As‐prepared RNS/PVC composite resins are analyzed by means of FTIR. The tensile strength and impact strength of compression‐molded RNS/PVC composites are measured and compared with that of compression‐molded PVC composites doped with dispersible nano‐SiO2 particles (abridged as DNS) surface‐modified with trimethyl silane alone. Moreover, the thermal stability of compression‐molded RNS/PVC and DNS/PVC composites is evaluated by thermogravimetric analysis. It has been found that RNS/PVC composites possess greatly increased impact strength and tensile strength than PVC matrix, while DNS/PVC composites possess higher impact strength than PVC matrix but almost the same tensile strength as the PVC matrix. This implies that DNS is less effective than RNS in improving the mechanical strength of PVC matrix. Particularly, RNS/PVC composites prepared by in situ suspension polymerization have much higher mechanical strength than RNS/PVC composites prepared by melt‐blending, even when their nanosilica content is only 1/10 of that of the melt‐blended ones. Besides, in situ polymerized RNS/PVC and DNS/PVC composites have better thermal stability than melt‐blended nanosilica/PVC composites. Hopefully, this strategy, may be extended to fabricating various novel high‐performance polymer‐matrix composites doped with organically functionalized nanoparticles like RNS. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
将热处理改性的聚醚醚酮(PEEK)粉末和碳纤维(CF)共混制备了PEEK/CF复合粉末。采用表观密度测试、扫描电子显微镜、电子万能试验机、热重分析、差示扫描量热法等对复合粉末材料的微观形貌、力学性能和热性能进行分析。结果表明,热处理后的PEEK粉末表观密度最高可达0.286 g/cm3。与纯PEEK相比,复合粉末的玻璃化转变温度、熔融温度和分解温度都有较大的提高;随着CF质量分数逐渐增加,复合粉末材料的拉伸强度、弯曲强度、弯曲弹性模量、热变形温度和维卡软化温度逐渐增大,冲击强度逐渐减小。改性PEEK/CF复合粉末材料为选择性激光烧结技术提供了高强度、高耐热性能的粉末材料,从而应用于汽车工业、电器工业、医疗器械和航空航天等领域。  相似文献   

10.
Binary blends of poly(vinyl chloride) (PVC) with α‐methylstyrene‐acrylonitrile‐butadiene‐styrene copolymer (AMS‐ABS) were prepared via melt blending. A single glass transition temperature (Tg) was observed by differential scanning calorimetry, thus indicating that PVC is miscible with the α‐methylstyrene‐acrylonitrile‐styrene in AMS‐ABS. The results from attenuated total reflection Fourier transform infrared spectra indicated that specific strong interactions were not available in the blends. With increasing amounts of AMS‐ABS, both heat distortion temperature and thermal stability were increased considerably. With regard to mechanical properties, flexural and tensile properties decreased with increasing AMS‐ABS content. A synergism was observed in impact strength. The morphology of both impact‐fractured and tensile‐fractured surfaces, observed by scanning electron microscopy, correlated well with the mechanical properties. It is suggested that there was a transition of fracture mechanisms with the changing composition of the binary blends—from shear yielding for blends rich in PVC to cavitation for blends rich in AMS‐ABS. J. VINYL ADDIT. TECHNOL., 19:1–10, 2013. © 2013 Society of Plastics Engineers  相似文献   

11.
赵祥迎  柴大程 《聚氯乙烯》2010,38(10):12-15,27
采用机械共混法和乳液共沉法制备了NBR/PVC共混胶,通过差示扫描量热仪(DSC)和场发射扫描电子显微镜(FE-SEM)对共混胶的微观形貌、结构进行了表征,考察了共混方式和共混胶配比对其力学性能的影响,并比较了共混胶、CPE、P-83对硬质/软质PVC的改性效果。结果表明:①与机械共混胶相比,乳液共沉胶混合得更均匀,分散性更好,其分子级混合程度更好;②乳液共沉胶试样的力学性能在总体上优于机械共混胶;③对于硬质PVC,CPE的改性效果优于其他改性剂;④对于软质PVC,乳液共沉胶的改性效果最好,特别是对撕裂强度的提高非常明显。  相似文献   

12.
采用原子转移自由基聚合(ATRP)方法在多壁碳纳米管(MWNT)表面接枝聚丙烯酸丁酯(PBA),制备得到PBA接枝MWNT(MWNT-g-PBA),并以此对聚氯乙烯(PVC)行改性。红外光谱(FTIR)及射电子显微镜(TEM)分析结果表明,采用ATRP法成功地将PBA接枝到MWNT的表面。采用熔融共混法制备了PVC/MWNT-g-PBA复合材料,对其力学性能和耐热性能进行了研究。结果表明,MWNT-g-PBA可以显著提高复合材料的拉伸强度和冲击强度,同时复合材料的耐热性能并未受到较大影响。  相似文献   

13.
聚乳酸/DMSO增塑淀粉复合材料的制备与表征   总被引:1,自引:0,他引:1  
采用聚乳酸分别和纯淀粉及二甲基亚砜(DMSO)塑化淀粉进行共混制备了淀粉/聚乳酸复合材料,通过力学性能测试,DSC测试,TG分析及SEM观察发现淀粉含量增加,材料力学性能降低,而经DMSO塑化淀粉共混物虽然其拉伸强度等力学性能降低,但冲击强度和弯曲应变均提高,且复合材料结晶度有较大提高,DMSO质量分数为3%时,复合材料的冷结晶温度降低9.4℃,熔融温度降低2.2℃。纯淀粉和聚乳酸共混复合材料呈现明显的两相结构,加入DMSO之后,界面黏结加强,呈现均相特征。  相似文献   

14.
利用熔融共混法制备了聚酰胺1010(PA1010)/羟基磷灰石(HA)复合材料,采用傅立叶变换红外光谱、热重分析仪和差示扫描量热仪测试了PA1010/HA复合材料的结构特征和热稳定性,利用电子万能试验机测试了PA1010/HA复合材料的力学性能。结果表明:复合材料中PA1010与HA之间通过氢键作用结合,而氢键作用的主要发生位置在PA1010酰胺键的氨基与HA的羟基之间;PA1010/HA复合材料具有良好的热稳定性,HA的加入对PA1010/HA复合材料的熔点基本没有影响,随着HA含量的增加,其熔融焓和结晶焓都降低。HA的加入,增强了PA1010/HA复合材料的拉伸性能和弯曲性能,与纯PA1010相比,分别提高了33.4%,98.3%。  相似文献   

15.
对不同配比的增塑聚氯乙烯/苯乙烯-丙烯腈共聚物(PVC/SAN)共混体系的性能进行了研究,并进行了扫描电镜、差示扫描量热、红外光谱和力学性能的测试与表征。结果发现,PVC和SAN是部分相容的;SAN的加入改善了增塑PVC/SAN共混体系的部分力学性能。  相似文献   

16.
以微晶纤维素(MCC)作为改性剂,马来酸酐接枝聚乳酸(PLA g MAH)为界面相容剂,聚乳酸(PLA)、聚碳酸亚丙酯(PPC)为基体,通过熔融共混法制得PLA/PPC/MCC三元复合材料。采用控温拉伸、动态热分析、扫描电子显微镜以及热失重分析等方法研究了MCC对PLA/PPC的力学性能和热稳定性。结果表明,PLA/PPC/MCC三元复合材料的拉伸强度提高了12.7 %,玻璃化转变温度(Tg)提高了9.8 ℃;PLA g MAH的加入可以改善PLA/PPC/MCC三元复合材料的界面性质,从而提高力学性能和热稳定性;当PLA g MAH的添加量为5 %(质量分数,下同)时,三元复合材料在常温下的拉伸强度、弯曲强度和冲击强度分别提高了53.7 %、43.1 %和18.5 %;在60 ℃下三元复合材料的断裂强度提高了80 %;热降解温度以及最大失重温度与PLA/PPC相比分别提高了25.31 ℃和61.83 ℃。  相似文献   

17.
Mechanical and thermal properties of poly(vinyl chloride) (PVC)/nanoclay (NC) composites prepared via melt‐blending in a single‐screw extruder were investigated. The effects of NC type, NC content, and K‐value of PVC were evaluated by using L9 orthogonal array of the Taguchi approach. The most influential variables and significance of interactive effects were examined for the highest values of Young's modulus and hardness. Scanning electron micrographs and X‐ray diffraction patterns revealed the formation of exfoliated/intercalated structures. Although the K‐value has a minor individual effect on mechanical characteristics, the interaction of the K‐value with NC type and NC content is significant. The composites were also characterized and tested by using analysis by thermal gravimetry, differential thermogravimetry, and differential scanning calorimetry methods. The results of the thermal studies indicated that decomposition of the organic modifier of NCs has a catalytic effect on the dehydrochlorination of PVC. This finding justifies the rather low mechanical properties of PVC/organoclay nanocomposites. Fourier‐transform infrared spectra of the samples were indicative of accelerated degradation reactions, which provided support for above observations. J. VINYL ADDIT. TECHNOL., 22:182–190, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
以废印刷电路板非金属粉(废PCB粉)为填料,采用熔融共混法制备了聚丙烯/废印刷电路板非金属粉复合材料,通过差示扫描量热分析(DSC) 、热重分析(TGA)、动态力学性能分析(DMA) 和扫描电镜分析(SEM)等方法,研究了废PCB粉和PP在不同质量配比下,复合材料的结晶熔融行为、热稳定性能、动态力学性能和冲击断面形貌。结果显示:随着废PCB粉的加入,复合材料的结晶速率和结晶度提高,热稳定性增强,储能模量得到提高,但熔点、力学损耗因子峰值和玻璃化转变温度有所下降;废PCB粉均匀分布于PP基体中,界面黏结性较好。  相似文献   

19.
采用熔融共混法制备了聚丙烯/聚苯乙烯/二甲基亚砜插层改性高岭土(PP/PS/K-DMSO)复合材料。研究了不同用量K-DMSO对PP/PS共混材料的结构及性能的影响。结果表明,随着K-DMSO的加入,复合材料的加工性能、力学性能、热性能均得到提高;与PP/PS共混材料相比,在K-DMSO的加入量为6 %(质量分数,下同)时,熔融流动速率增加了2.925 g/(10min),冲击强度提高了48.8 %,弯曲强度提高了24.1 %。扫描电镜分析表明,K-DMSO的加入,使PP与PS两相界面模糊,PS分散相尺寸减小,增加了PP、PS的相容性。  相似文献   

20.
The fabrication of carbon nanotube/polyvinyl chloride (PVC) composites and a study of their thermal and mechanical properties are reported. Phosphorylated multiwalled carbon nanotube (p-MWCNT) and pristine MWCNT were used. The MWCNT were embedded in the polymer matrix through melt mixing. The phosphorylation of the MWCNT and their dispersion in the PVC matrix were characterized by scanning and transmission electron microscopy and Raman spectroscopy. Thermal analysis by thermal gravimetric analysis and differential scanning calorimetry, showed an increase in glass transition temperature and melting temperature for the composites with respect to pure PVC. The modulus of the MWCNT/PVC composites increased while there was a reduction in their tensile strength, indicating a decrease in polymer toughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号