首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
高瓦斯矿井使用地面L型钻孔代替高抽巷抽采瓦斯,能够节省大量巷道掘进工程,减缓采掘接替紧张状况。为了研究L型钻孔的最优布置位置,以新景矿3213工作面为例,采用相似模拟和三维数值模拟,确定了采场上方覆岩的运移规律和裂隙带三维分布形态。根据采动三维裂隙分布形态建立三维裂隙场模型,导入COMSOL模拟软件,对不同位置的L型地面定向钻孔,模拟抽采过程中的瓦斯运移规律和富集分布区域。结果表明,抽采钻孔能有效降低采空区的瓦斯体积分数,钻孔布置在回风巷上方的"O"型裂隙区中上部时抽采效果最好。根据新景矿3213工作面实际情况,定向钻孔最优布置位置为垂直方向在回风巷上方距煤层顶板20~30 m,水平方向在回风巷内错平距15~30 m。经现场5个月的抽采试验,地面L型钻孔平均抽采瓦斯体积分数78.5%,抽采瓦斯纯量8.58 m~3/min,日抽采纯量达到11 953 m~3,占工作面总瓦斯涌出量的42.60%,有效地解决了工作面瓦斯的控制问题。  相似文献   

2.
煤层开采过程中上覆岩层裂隙演化规律研究   总被引:1,自引:0,他引:1  
以淮南煤矿典型工作面为例,采用离散元数值软件UDEC(universal distinct element code)对工作面回采过程中上下煤岩体内应力场的变化及直接顶冒落过程进行了模拟,分析了上覆煤岩体裂隙产生、发展的形成过程,得到了上覆煤岩裂隙演化规律。研究结果表明,倾向方向工作面回采后,上覆煤岩体内产生冒落、裂隙带和离层带,在工作面内上角位置产生O型圈裂隙带,裂隙发育最大高度为45m。煤层走向回采方向得到了初期来压步距约50m,周期来压步距约20m,上覆煤岩体裂隙在采空区上方约呈45°角发展,并随工作面的前进由下向上、由后往前依次演变。该结果对于煤与瓦斯共采中瓦斯抽放钻孔方位的布置具有工程指导意义。  相似文献   

3.
王家岭煤矿是典型的低瓦斯煤层高强度开采引起的高瓦斯矿井,由于煤层瓦斯含量不高且透气性差,所以瓦斯抽采顶板难度大。为了得到适合于王家岭煤矿的高位定向水平钻孔抽采卸压瓦斯工艺参数,现场跟踪考察了12318综放工作面高位定向钻孔的瓦斯抽采体积分数、纯流量等工艺参数,分析了布孔垂直层距、水平错距等关键参数与抽采效果的关联特性。依据实测的顶板岩层力学参数及经验公式,计算得到顶板冒落带高度,为19.11~24.10 m;裂隙带高度,为57.06~74.86 m。分析抽采效果认为:同一钻场中的钻孔抽采瓦斯纯流量随着钻孔垂直层距的增大而增大,钻孔抽采瓦斯纯量随水平错距的减小而增大,垂直层距最大的2个钻孔瓦斯抽采纯量占钻场抽采总量的70%以上。钻场钻孔垂直层距在25~41 m时,对工作面上隅角瓦斯防治效果明显优于垂直层距20 m的钻场。  相似文献   

4.
煤与远程卸压瓦斯安全高效共采试验研究   总被引:49,自引:0,他引:49  
运用高瓦斯煤层群煤与瓦斯安全高效共采的思想,在淮南潘一矿进行了煤与瓦斯安全高效共采及远程瓦斯抽采的试验研究:首先开采瓦斯含量低、无突出危险的B11煤层,利用其采动影响使处在其上部70m(相对层间距35)的C13煤层卸压,煤层透气性系数增加近3000倍,瓦斯大量解吸并形成了沿顺层张裂隙流动的条件,通过在C13煤层底板沿走向布置的瓦斯抽采巷向C13煤层均匀地打网格式上向穿层钻孔,C13煤层内的卸压解吸瓦斯在煤层残余瓦斯压力和抽采负压作用下沿顺层张裂隙向抽采钻孔汇集,瓦斯抽采率达60%以上,不仅消除了煤与瓦斯突出危险性,而且相对瓦斯涌出量由原来25m^3/t下降到5m^3/t,工作面日产量由原来的1700t提高到5100t,成功地实现了煤与瓦斯两种资源的安全高效共采。  相似文献   

5.
告成煤矿的主采二1煤层属典型"三软"厚煤层,回采工作面隅角和回风流中瓦斯体积分数超限的主要原因是采空区瓦斯涌出过多,采取顶板岩石钻孔的方法对采空区冒落带及冒落裂隙带的瓦斯进行抽放,降低了回采工作面隅角和回风流中的瓦斯体积分数,避免了采煤工作面隅角和回风流瓦斯体积分数超限,同时克服了工作面风速超限的问题.实践表明,顶板岩石钻孔抽放冒落带及冒落裂隙带的瓦斯,是解决"三软"厚煤层瓦斯超限的有效途径.  相似文献   

6.
地面群孔瓦斯抽采技术应用研究   总被引:1,自引:0,他引:1  
为保证新集一矿突出煤层13-1煤北中央采区的安全开采,先后开采131103、131105等11-2煤层工作面作为保护层。首先在上述两个工作面共布置了6个地面钻孔,建立了地面群孔瓦斯抽采系统,预抽采动区被保护层13-1煤瓦斯。接下来对地面钻孔抽采瓦斯参数进行了考察,主要包括基于示踪技术考察了131105工作面采动卸压地面钻孔走向及倾向瓦斯抽采半径,统计分析被保护层瓦斯抽采率,同时就地面群孔与井下底板巷穿层钻孔瓦斯抽采两种方法进行了抽采率、工程费用等方面的对比。研究结果表明:新集一矿的地层条件下地面钻孔抽采煤层卸压瓦斯沿煤层倾向和走向的抽采半径分别不小于160m和240m;采动区地面群孔瓦斯抽采率达35%以上;地面钻孔相对比井下底板巷,在抽采瓦斯方面具有技术上可靠、安全、经济等优点。  相似文献   

7.
告成煤矿的主采二1煤层属典型“三软”厚煤层,回采工作面隅角和回风流中瓦斯体积分数超限的主要原因是采空区瓦斯涌出过多,采取顶板岩石钻孔的方法对采空区冒落带及冒落裂隙带的瓦斯进行抽放,降低了回采工作面隅角和回风流中的瓦斯体积分数,避免了采煤工作面隅角和回风流瓦斯体积分数超限,同时克服了工作面风速超限的问题.实践表明,顶板岩石钻孔抽放冒落带及冒落裂隙带的瓦斯,是解决“三软”厚煤层瓦斯超限的有效途径.  相似文献   

8.
在对张集煤矿11418综采工作面瓦斯来源分析的基础上,采用分源预测法预测出该面最大相对瓦斯涌出量为6.15m3/t,最大绝对瓦斯涌出量为34.2m3/min.提出了采用风排、高抽巷、顶板高位钻孔永久抽放系统和上隅角埋管移动抽放系统综合治理采面瓦斯的技术思路,确定了永久和移动抽放系统的瓦斯抽放参数,进行了主要抽放设备的选型,提出了治理效果的监测方法,为高瓦斯工作面提供了一套合理的瓦斯治理技术及参考方案.  相似文献   

9.
煤层群采动覆岩裂隙演化与煤炭开采、卸压瓦斯渗流具有内在的联系,为建立煤炭开采与卸压瓦斯抽采(共采)的协同作用机制,阐明了共采协同的内涵,应用协同学理论建立了以单宽工作面煤炭日产量Q_m、覆岩裂隙带日扩展体积V和卸压瓦斯涌出量Q_g为协同变量的共采系统序参量方程,试验研究了覆岩裂隙垂向与水平扩展特征,建立了裂隙带发育体积演化模型,通过对序参量方程进行线性稳定性分析,建立了协同变量的相互影响机制.以沙曲矿为背景进行了共采协同机制应用研究,构建了24208工作面共采协同变量的相互影响机制.结果表明:裂隙钻孔抽采层位选择裂隙带日扩展体积V曲线拐点位置(距顶板19.5~22.6 m)较为合理.  相似文献   

10.
针对矿井浅部瓦斯治理模式已不能保障深部采区安全高效生产的现状,提出一种适宜矿井深部新水平开采的瓦斯综合治理模式.工作面消突采用底板岩巷穿层钻孔预抽煤巷条带瓦斯;底板岩巷布置“一巷多用”,在工作面回采工程中可兼做回风巷、尾抽巷、措施巷;回采工作面采用沿空留巷Y型通风综合治理瓦斯.其中,顺层钻孔预抽本煤层瓦斯,高位钻场顶板走向钻孔抽采裂隙带瓦斯,上隅角、尾巷埋管抽采采空区瓦斯,形成矿井三维立体瓦斯抽采体系.  相似文献   

11.
构造煤及其对煤与瓦斯突出的控制作用   总被引:32,自引:4,他引:28  
高空隙率、低透气性使构造煤能够保持较高的瓦斯压力 ;破碎性、“隔离”作用及“气垫”作用 ,使构造煤抵御外力作用的能力大大降低 ;构造煤变形幅度大的特性 ,为瓦斯的迅速解吸、放散和快速流动创造了条件 ;构造煤薄弱分层或“通道层”的存在 ,则为煤与瓦斯突出的初始激发和持续发展奠定了基础 ;上述因素的共同作用 ,影响和制约了煤与瓦斯突出的强度和分布 .尽管如此 ,一定厚度的构造煤的存在只是发生煤与瓦斯突出的必要条件和有利条件 ,而非充分条件 .  相似文献   

12.
针对两软一硬煤层特殊的瓦斯地质条件,以云盖山井田一矿二1煤层为例,探寻了两软一硬煤层煤与瓦斯突出的控制因素,分析了掘进工作面掘进期间突出预测指标的分布特征,总结归纳了"两软一硬"煤层煤与瓦斯突出发生规律.研究结果表明,由于地质构造变动,云盖山一矿二1煤层产状变化较大,煤层倾角发生急剧变化的地带,地应力集中;受层间滑动构造的影响,煤层厚度变化较大,具有突然增厚、变薄以至尖灭、挤灭现象;二1煤层构造软煤呈连续层状发育.因此,在煤层薄、厚交接处(煤层急剧变化带),小断层附近,应力集中,瓦斯积聚,煤体破坏严重,易发生突出.此项研究,可为地质条件类似矿井开展瓦斯地质研究和瓦斯灾害防治工作提供方法借鉴和理论指导.  相似文献   

13.
介绍了晋城矿区寺河矿高瓦斯矿井一次采全高工作面瓦斯治理方法和瓦斯利用情况,提出了高瓦斯矿井一次采全高工作面瓦斯治理途径和技术,指出高瓦斯矿井高产高效、安全生产的根本出路在于提高瓦斯抽放率,加强瓦斯利用,进而提高矿井的综合效益.  相似文献   

14.
煤与瓦斯突出的热动力过程分析   总被引:3,自引:1,他引:2  
针对当前计算瓦斯膨胀能中存在着的绝热假设不符合实际的问题 ,在前人实验室研究和现场观测的基础上 ,从热力学的角度入手研究了煤与瓦斯突出过程中的能量转换过程 .指出瓦斯膨胀过程是一多变过程 ,提出了多变指数n的确定方法 ,建立了煤与瓦斯突出过程中能量交换的热力学模型 .  相似文献   

15.
煤与瓦斯突出的热动力过程分析   总被引:1,自引:1,他引:0  
针对当前计算瓦斯膨胀能中存在着的绝热假设不符合实际的问题,在前人实验室研究和现场观测的基础上,从热力学的角度入手研究了煤与瓦斯突出过程中的能量转换过程.指出瓦斯膨胀过程是一多变过程,提出了多变指数n的确定方法,建立了煤与瓦斯突出过程中能量交换的热力学模型.  相似文献   

16.
综述了煤与瓦斯突出模拟试验研究现状,主要从瓦斯压力、地应力和煤体物理力学性质及其综合作用方面分析了其对煤与瓦斯突出的影响以及在这些因素影响下的突出特点、形式和规律。鉴于煤与瓦斯突出的复杂性,目前的研究还存在以下不足:(1)试验过程中用的都是颗粒煤或者是型煤,很难真实反映现场的煤层物理特性;(2)试验载荷的施加方式和大小反映不了现场煤体中真实的三维应力状态;(3)实验室模拟试验中的突出口多数情况是人为打开的,而不是煤体内部达到突出条件后自主打开的。建议使用原煤煤样、加大模拟实验尺度、采用真三轴加载方式、合理设置突出口进一步开展多因素耦合的煤与瓦斯突出模拟试验,对煤层瓦斯突出机理的研究具有重要的现实意义。  相似文献   

17.
针对新集二矿深部二水平瓦斯含量高、瓦斯压力大的特点,采取顺层抽放、高位钻孔抽放、顶板高位巷抽放、开采解放层等综合防治瓦斯措施,为深部二水平的瓦斯防治提供了治理方案.  相似文献   

18.
A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China.  相似文献   

19.
石门短导硐快速揭煤防突技术研究及应用   总被引:2,自引:0,他引:2  
突出煤层石门揭煤是煤矿采掘生产中的复杂作业过程,其突出威胁大、破坏强度高,研究安全有效的揭煤技术对矿井的安全生产和采掘接替意义重大.针对石门揭煤发生突出的特点,以“流变假说”为理论基础,分析了石门揭煤防突的机理;通过对石门揭煤方式、导硐布置形式、瓦斯抽放方法和预留岩柱抵抗突出作用等的深入研究,确定了石门短导硐快速揭煤方案,并在演马庄矿2个揭煤地点实施了该方案.实践表明,该揭煤方案防突效果显著,施工安全、快速,并具有明显的经济效益.  相似文献   

20.
安林煤矿煤与瓦斯突出区域危险性分布的探讨   总被引:1,自引:0,他引:1  
通过分析安林煤矿煤与瓦斯突出特点及瓦斯赋存状况,研究和探讨了地质构造和岩浆岩侵入对煤质和瓦斯赋存的影响,测定了突出预测指标在煤层中的变化及其分布规律,对开采煤层进行了突出危险性区划.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号