首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The exponential H filtering problem of discrete‐time switched state‐delay systems under asynchronous switching is considered in this paper. The objective is to design a full‐order or reduced‐order switched filter guaranteeing the exponential stability with the weighted H performance of the filtering error system. A sufficient condition for the exponential stability with the weighted H performance of the filtering error system is provided based on delay‐dependent multiple Lyapunov‐Krasovskii functionals. The gains of the filter can be obtained by solving a set of linear matrix inequalities. A numerical example is presented to demonstrate the effectiveness of the developed results.  相似文献   

2.
This paper is concerned with the H filtering design for discrete‐time stochastic time‐delay systems with state dependent noise. A sufficient condition for the existence of H filter design is presented via linear matrix inequalities. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

3.
In this paper, the problem of exponential H filter problem for a class of discrete‐time polytopic uncertain switched linear systems with average dwell time switching is investigated. The exponential stability result of the general discrete‐time switched systems using a discontinuous piecewise Lyapunov function approach is first explored. Then, a new µ‐dependent approach is proposed, which means the analysis or synthesis of the underlying systems is dependent on the increase degree µ of the piecewise Lyapunov function at the switching instants. A mode‐dependent full‐order filter is designed such that the developed filter error system is robustly exponentially stable and achieves an exponential H performance. Sufficient existence conditions for the desired filter are derived and formulated in terms of a set of linear matrix inequalities, and consequently the minimal average dwell time and the corresponding filter are obtained from such conditions for a given system decay degree. A numerical example is presented to demonstrate the potential and effectiveness of the developed theoretical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This article studies the problem of H filtering for linear discrete‐time systems with state delay. Via delay partitioning idea, two new H filter design methods are proposed with much less conservatism than most existing results. The improvement lies in constructing two new Lyapunov–Krasovskii functionals by partitioning the known constant lower bound of delay into several segments equally. Using free‐weighting matrix and Jensen inequality methods, two new delay‐dependent bound real lemmas (BRLs) are obtained, which depend on both the delay and the partitioning number. Based on the obtained BRLs, new H filter design approaches are proposed in terms of linear matrix inequalities. The results are immediately extended to multiple time delay case and polytopic uncertain case, respectively. Three numerical examples are presented to illustrate the effectiveness and advantage of the proposed approaches. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the exponential H filter design problem is investigated for a general class of stochastic time‐varying delay system with Markovian jumping parameters. The stochastic uncertainties appear in both the dynamic and the measurement equations and the state delay is assumed to be time‐varying. Attention is focused on the design of mean‐square exponentially stable and Markovian jump filter such that the filtering error systems are mean‐square exponentially stable and the estimation error satisfies a given H performance. By introducing some slack matrix variables, delay‐dependent sufficient conditions for the solvability of the above problem are presented in terms of linear matrix inequalities (LMIs). In addition, the decay rate can be a given positive value without any other constraints. When the proposed LMIs are feasible, an explicit expression of the desired H filter can be given. A numerical example is provided to illustrate the effectiveness of the proposed design approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The dissipativity of discrete‐time switched memristive neural networks with actuator saturation is considered in this paper. By constructing a quasi‐time‐dependent Lyapunov function, sufficient conditions are obtained to guarantee the exponential stability and exponential dissipativity for the closed‐loop system with mode‐dependent average dwell time switching. Furthermore, the exponential H performance of discrete‐time switched memristive neural networks is also analyzed, while the quasi‐time‐dependent controller and observer gains of the desired exponential dissipative and H performance can be calculated from linear matrix inequalities. Finally, the effectiveness of theoretical results is illustrated through the numerical examples.  相似文献   

7.
This paper deals with the problem of exponential H filtering for a class of continuous‐time switched linear system with interval time‐varying delay. The time delay under consideration includes two cases: one is that the time delay is differentiable and bounded with a constant delay‐derivative bound, whereas the other is that the time delay is continuous and bounded. Switched linear filters are designed to ensure that the filtering error systems under switching signal with average dwell time are exponentially stable with a prescribed H noise attenuation level. Based on the free‐weighting matrix approach and the average dwell technology, delay‐dependent sufficient conditions for the existence of such a filter are derived and formulated in terms of linear matrix inequalities (LMIs). By solving that corresponding LMIs, the desired filter parameterized matrices and the minimal average dwell time are obtained. Finally, two numerical examples are presented to demonstrate the effectiveness of the developed results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The problem of exponential l2?l output tracking control is considered in this paper for discrete‐time switched systems with time‐varying delay. The exponential l2?l performance index is first introduced to study this problem for discrete‐time switched systems. By resorting to the average dwell time approach and Lyapunov–Krasovskii functional technology, some new delay‐dependent criteria guaranteeing exponential stability are developed. In addition, the corresponding solvability conditions using cone complement linearization method for the desired exponential l2?l output tracking controller is established. A numerical example is provided to demonstrate the effectiveness of the obtained results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the problem of delay‐dependent exponential H filtering for discrete‐time switched delay systems is investigated under average dwell time switching signals. Time delay under consideration is interval time‐varying in the states. By introducing a proper factor to construct a novel Lyapunov‐Krasovskii function and using average dwell time approach, sufficient conditions for the solvability of this problem, dependent on the upper and lower bounds of time‐varying delay, are obtained in terms of linear matrix inequalities. A numerical example is presented to demonstrate the effectiveness of the developed results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
We investigate the exponential stability and L2‐gain analysis for the synchronization of stochastic complex networks under average dwell time switched topology with consideration of external disturbance, internal noise and fast time‐varying delay in the synchronized process. Based on the proposed stochastic network, a new L2‐gain synchronization is proposed to solve the mean‐square exponential stable under switched topology with an H performance from the extrinsic disturbances to the synchronization error. The obtained results are applicable for the fast time‐varying case with larger‐than‐1 delay derivative. Finally, numerical simulations are performed to demonstrate the effectiveness of our strategies.  相似文献   

11.
This paper deals with the problem of delay‐dependent H filtering for spatially interconnected time‐delay systems (SITSs) with interconnected chains in finite frequency domains. First, a multidimensional (N‐D) hybrid time‐delay Roesser model and a delay‐dependent finite frequency bounded ream lemma (BRL) for SITSs with interconnected chains are proposed. Then, using the obtained delay‐dependent finite frequency BRL, a finite frequency H filter design method can be derived by solving a set of linear matrix inequalities (LMIs). Finally, a practical example is provided to clearly demonstrate the effectiveness of the proposed method.  相似文献   

12.
The stochastic finite‐time H filtering issue for a class of nonlinear continuous‐time singular semi‐Markov jump systems is discussed in this paper. Firstly, sufficient conditions on singular stochastic H finite‐time boundedness for the filtering error system are established. The existence of a unique solution for the corresponding system is also ensured. Secondly, based on the bounds of the time‐varying transition rate, without imposing constraints on slack variables, a novel approach to finite‐time H filter design is proposed in the forms of strict LMIs, which guarantees the filtering error system is singular stochastic H finite‐time bounded and of a unique solution. Compared with the existing ones, the presented results reveal less conservativeness. Finally, one numerical example is exploited to testify the advantage of the proposed design technique.  相似文献   

13.
The problem of H deconvolution filter design for a class of singular Markovian jump systems with time‐varying delays and parameter uncertainties is considered in this paper. By constructing a more comprehensive stochastic Lyapunov‐Krasovskii functional, novel delay‐dependent conditions are established to guarantee the filtering error system is not only stochastically admissible, but also satisfies a prescribed H‐norm level for all admissible uncertainties. The desired filter parameters can be obtained by solving a set of strict linear matrix inequalities. Two examples and an electrical RLC circuit example are employed to verify the effectiveness and usefulness of the proposed methods in the paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This paper investigates the reliable H filtering problem for a class of mixed time‐delay systems with stochastic nonlinearities and multiplicative noises. The mixed delays comprise both discrete time‐varying and distributed delays. The stochastic nonlinearities in the form of statistical means cover several well‐studied nonlinear functions. The multiplicative disturbances are in the form of a scalar Gaussian white noise with unit variance. Furthermore, the failures of sensors are quantified by a variable varying in a given interval. In the presence of mixed delays, stochastic nonlinearities, and multiplicative noises, sufficient conditions for the existence of a reliable H filter are derived, such that the filtering error dynamics is asymptotically mean‐square stable and also achieves a guaranteed H performance level. Then, a linear matrix inequality (LMI) approach for designing such a reliable H filter is presented. Finally, a numerical example is provided to illustrate the effectiveness of the developed theoretical results.  相似文献   

15.
This paper is concerned with the problem of delay‐range‐dependent robust H filtering for systems with time‐varying delays in a range. The aim of this problem is to design a filter such that, for all admissible uncertainties, the filtering error system is robustly asymptotically stable with a prescribed H level. The desired filter can be constructed by solving a set of linear matrix inequalities (LMIs). An illustrative numerical example is provided to demonstrate the effectiveness of the proposed method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

16.
This paper focuses on H filtering for linear time‐delay systems. A new Lyapunov–Krasovskii functional (LKF) is constructed by uniformly dividing the delay interval into two subintervals, and choosing different Lyapunov matrices on each subinterval. Based on this new LKF, a less conservative delay‐dependent bounded real lemma (BRL) is established to ensure that the resulting filtering error system is asymptotically stable with a prescribed H performance. Then, this new BRL is equivalently converted into a set of linear matrix inequalities, which guarantee the existence of a suitable H filter. Compared with some existing filtering results, some imposed constraints on the Lyapunov matrices are removed through derivation of the sufficient condition for the existence of the filter. Numerical examples show that the results obtained in this paper significantly improve the H performance of the filtering error system over some existing results in the literature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This paper deals with delay‐dependent H control for discrete‐time systems with time‐varying delay. A new finite sum inequality is first established to derive a delay‐dependent condition, under which the resulting closed‐loop system via a state feedback is asymptotically stable with a prescribed H noise attenuation level. Then, an iterative algorithm involving convex optimization is proposed to obtain a suboptimal H controller. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The problem of H filtering is considered for singular Markovian jump systems with time delay. In terms of linear matrix inequality (LMI) approach, a delay‐dependent bounded real lemma (BRL) is proposed for the considered system to be stochastically admissible while achieving the prescribed H performance condition. Based on the BRL and under partial knowledge of the jump rates of the Markov process, both delay‐dependent and delay‐independent sufficient conditions that guarantee the existence of the desired filter are presented. The explicit expression of the desired filter gains is also characterized by solving a set of strict LMIs. Some numerical examples are given to demonstrate the effectiveness of the proposed methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the problem of robust H filtering for uncertain stochastic systems. The system under consideration is subject to time‐varying norm‐bounded parameter uncertainties and unknown time delays in both the state and measurement equations. The problem we address is the design of a stable filter that ensures the robust stochastic stability and a prescribed H performance level for the filtering error system irrespective of all admissible uncertainties and time delays. A suffient condition for the solvability of this problem is proposed and a linear matrix inequality approach is developed for the design of the robust H filters. An illustrative example is provided to demonstrate the effctiveness of the proposed approach.  相似文献   

20.
In this paper, the robust H filtering problem for a class of discrete Markovian jump systems with time‐varying delays and linear fractional uncertainties is investigated based on delta operator approach. Based on Lyapunov‐Krasovskii functional in delta domain, new delay‐dependent sufficient conditions for the solvability of this problem are presented in terms of linear matrix inequalities (LMIs). When these LMIs are feasible, an explicit expression of a desired jump H filter is given. The proposed method can unify some previous related continuous and discrete systems into the delta operator systems framework. Numerical examples are given to illustrate the effectiveness of the developed techniques. © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号