首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 722 毫秒
1.
为研究高抽巷抽采负压对治理采空区瓦斯的影响并寻求最优抽采参数,以赵庄矿1309工作面为背景,通过数值计算得到布置垂高应为25m,平距应为20m。通过FLUENT软件对进行高抽巷不同抽采负压条件下的数值模拟,并采用UDF程序定义采空区参数使模拟结果接近实际。模拟结果表明:在无抽采模型下,工作面上隅角瓦斯浓度最高可达18%,影响安全回采。高抽巷抽采条件下增大抽采负压,采空区瓦斯浓度降低,上隅角附近的低瓦斯浓度区域由不存在逐渐扩大。高抽巷瓦斯体积分数及抽采纯量在抽采负压高于20kPa后增量趋于平缓。为保证抽采效果同时避免采空区漏风,确定合理抽采负压为20kPa。现场实测高抽巷瓦斯抽采纯量平均为43.93m/min,与模拟结果基本吻合。  相似文献   

2.
为有效合理布置15102工作面高抽巷瓦斯抽采系统,采用Fluent数值模拟软件进行高抽巷合理布置位置及瓦斯抽采负压的模拟分析,确定高抽巷的合理位置与煤层顶板、回风巷垂距分别为35m和40m,瓦斯抽采负压为2.5kPa,同时对抽采系统中的其他参数进行具体设计,实现了工作面区域无瓦斯超限和安全高效抽采作业。  相似文献   

3.
周湘龙 《煤》2021,30(3):55-57
为有效治理18303工作面采空区的瓦斯,采用Fluent数值模拟软件进行高抽巷和上隅角埋管抽采下采空区瓦斯分布规律的模拟分析,基于模拟结果确定采用高抽巷+上隅角埋管的方式进行采空区瓦斯治理,通过数值模拟进行高抽巷及埋管抽采合理参数的分析,结合工作面特征确定高抽巷与回风巷平距P=17 m,与煤层顶板垂距C=36 m,埋管抽采的合理间距为20 m,并对抽采方案进行具体设计,抽采方案实施后进行验证分析。结果表明:抽采方案实施后,上隅角瓦斯浓度最大为0.8%左右,抽采效果显著,采空区瓦斯得到了有效治理。  相似文献   

4.
为了确定高抽巷抽采瓦斯的合理位置,通过构建19201工作面采空区瓦斯运移模型,借助FLUENT软件模拟分析高抽巷距回风巷不同平距、煤层顶板不同垂高条件下的瓦斯抽放效果,结果表明:在垂距为40 m的层位下,高抽巷距回风巷水平距离为30 m时,其所能抽采的瓦斯浓度最大,工作面上隅角瓦斯浓度为0.48%;在水平距为30 m的基准条件下,当高抽巷距离采空区底板垂直高度为40 m时,高抽巷抽采瓦斯浓度最大,抽采瓦斯纯量最高。从而确定了高抽巷的最佳位置为距离回风巷水平距离30 m,距离采空区顶板垂直距离40 m。  相似文献   

5.
为确保工作面采用走向高抽巷抽采瓦斯取得良好的治理效果,通过理论分析初步确定高抽巷的布置位置参数,采用Fluent软件对高抽巷不同布置位置条件下的瓦斯抽采效果进行研究,最终确定1228工作面高抽巷最佳位置为与煤层底板垂距32m,与1228材料巷平距35m,后期应用取得了良好的抽采效果,为该矿其他回采工作面瓦斯治理提供了参考依据。  相似文献   

6.
为充分发挥走向高抽巷和偏"W"型通风系统的优点,确定走向高抽巷的最佳抽采位置,通过Geometry和Mesh建立相对应的数值模型,然后使用Fluent软件进行采空区及综放工作面瓦斯运移规律的数值模拟和分析。分析结果表明:高抽巷布置于与工作面顶板垂距35 m(10倍采高处)和回风巷平距30 m的断裂带中抽采效果最好,且能有效防治上隅角瓦斯超限,确保综放工作面安全高效地生产。  相似文献   

7.
《煤矿安全》2016,(8):143-146
为研究采动岩体垮落后综采放顶煤采空区瓦斯治理模式,基于采动岩体裂隙发育规律的重要性,针对某矿E1310综放工作面,采用MATLAB研究了采动岩体孔隙率和渗透率的分布规律,采用FLUENT数值模拟软件研究了4种通风方式、6个高抽巷抽采位置和41种抽采负压中最合理的采空区瓦斯治理模式。结果表明:"Y"型通风方式,上隅角瓦斯浓度为3%;高抽巷布置在距底板50 m、距回风巷50 m,上隅角瓦斯浓度降至0.5%;抽采负压为1.9 MPa,瓦斯不超限,工作面氧气浓度为22%。  相似文献   

8.
根据对采空区覆岩裂隙发育及瓦斯运移情况进行分析,在开采煤层顶板采动裂隙带内布置高位瓦斯抽排巷抽采采空区卸压瓦斯,合理确定高抽巷设置层位,通过对高抽巷抽采厚煤层综采工作面瓦斯的抽采效果考察,结果表明,高抽巷瓦斯抽采有效保证了工作面安全高效生产,对类似条件下的工作面瓦斯治理具有一定的借鉴意义。  相似文献   

9.
针对东曲矿+860水平28804综采工作面瓦斯赋存量大和开采强度大的特点,提出以高抽巷为主的综合瓦斯治理措施,通过理论计算、28202高抽巷现场实践及瓦斯抽采经验,确定了28804综采工作面高抽巷的合理位置,并对比分析了28804工作面回采初期高抽巷瓦斯抽采效果,为今后+860水平高瓦斯综采工作面高抽巷的布置提供依据。  相似文献   

10.
数值模拟分析表明采煤工作面煤层上方13~20 m为卸压抽采空区瓦斯的合理区间,确定205工作面高位抽采巷布置在煤层上方15 m位置。效果考察表明,205工作面高抽巷瓦斯抽采浓度提高了2%,抽采量增加了35%,明显减少了瓦斯超限次数,使得工作面推进速度得到保障。  相似文献   

11.
通过在采煤工作面使用高抽巷抽放采空区瓦斯,有效降低采煤工作面上隅角和回风流的瓦斯浓度,有效地改善了工作面的安全生产水平。通过对高抽巷的巷道布置、抽放效果和影响因素的研究与分析,总结出了高抽巷垂距和平距,减小采空区、高抽巷漏风,控制好高抽巷的抽放量等因素是影响高抽巷瓦斯治理效果的主要因素,为其他矿井高抽巷抽采治理上隅角瓦斯提供了参考。  相似文献   

12.
为了对高瓦斯工作面采空区抽采钻场进行设计,使采空区及工作面上隅角瓦斯得到有效控制,通过数值模拟分析了采场覆岩结构及裂隙发育规律;根据模拟结果利用实验室试验分析了抽采钻孔在不同位置时采空区瓦斯的运移规律,得出终孔位置距煤层顶板上方30m左右,距回风巷水平距离10~20m时抽采效果最佳;且终孔高度应根据工作面覆岩结构形态有所区别,靠近回风巷的钻孔高度应控制在规则冒落带上部,靠近工作面中部的钻孔应布置在裂隙带内。  相似文献   

13.
高突矿井瓦斯抽采是治理工作面隅角瓦斯超限的重要手段,各抽采方式布置层位不同,其抽采效果存在明显差异,研究协同抽采各抽采方式的最优布置层位具有重要意义。为提高高抽巷抽采效率实现瓦斯精准抽采,基于“椭抛带”理论,运用Fluent数值模拟软件对协同抽采各抽采方式的布置层位进行模拟研究,分析各布置条件下工作面隅角瓦斯浓度,确定最优布置层位。模拟结果表明协同抽采中各抽采方式布置层位为:高抽巷最优平距25 m,最优垂距30 m,定向长钻孔最优平距在10~20 m,最优垂距在11~21 m。通过对单一抽采与协同抽采进行对比分析,协同抽采中回风侧快速提升区跨度明显增大,使得回风侧经上隅角涌入工作面的瓦斯强度降低,隅角瓦斯得到进一步控制。协同抽采较好解决了工作面回风侧风流引起的相对负压造成上隅角瓦斯大量聚集的问题,隅角涡流所引起的瓦斯聚集现象在长钻孔抽采下逐步消失。优化后的布置参数进行现场应用后,试验工作面在生产期间高抽巷平均抽采纯量为64.79 m3/min,占瓦斯涌出量的79.91%,定向长钻孔平均抽采纯量为9.68 m3/min,减小了风排瓦斯的压力,上...  相似文献   

14.
王亮 《中州煤炭》2019,(3):33-35,59
随着工作面推进速度的加快及工作面生产能力的逐渐提高,导致工作面瓦斯涌出量增大,瓦斯是煤矿生产的主要危险源。从理论分析、数值模拟和现场实际相结合的方法,对工作面瓦斯涌出、竖直三带划分特征进行分析,然后数值模拟分析了不同层位参数下高抽巷瓦斯抽采效果。研究得出:该煤矿瓦斯主要包括煤壁瓦斯涌出、采空区瓦斯涌出和采落煤瓦斯涌出;经过多次周期来压后,在采空区形成了采动裂隙“O”形圈;由硬覆岩岩性的经验公式计算煤矿裂隙带最大高度为75~85 m、垮落带距煤层顶板最大高度为30~40 m;选择H=40 m,L=25 m时,能够达到最优抽采效果。对高抽巷合理层位的选择以及优化,是确保高抽巷高效、安全抽采的有效途径。  相似文献   

15.
以刘庄煤矿151305高强度综采面高抽巷瓦斯抽采效果分析为背景,其抽采效果呈现阶段性特征。总体来看,不同阶段高抽巷抽采效果较显著。抽采率最高为62%,平均42%。回风量较稳定,回风瓦斯浓度最大仅0.42%。分析抽采效果形成原因,推测高抽巷最佳布置层位为垂距煤层顶板50~55 m。研究成果可为相似开采情况的工作面瓦斯治理提供参考。  相似文献   

16.
为了解决综采工作面采空区瓦斯向回采空间和回风隅角涌出而造成的局部瓦斯积聚和超限问题,沿煤层顶板裂隙发育带施工走向高位抽采巷,对采空区瓦斯进行抽采。通过对走向高位抽采巷抽采采空区瓦斯效果和对回风流、回风隅角瓦斯浓度的影响分析,得出走向高位抽采巷末端进入采空区40 m左右时,抽采效果达到峰值,并基本稳定,解决了综采工作面生产期间回风流、回风隅角瓦斯治理难题,杜绝了瓦斯超限事故。  相似文献   

17.
李大冬  李德慧 《煤》2023,(1):25-27+31
低抽巷是治理高瓦斯矿井综采工作面上隅角瓦斯的关键技术措施之一,为研究低抽巷在工作面顶板空间的最优布置,以华阳一矿15号煤层回采工作面为研究对象,通过理论分析及现场试验效果比较相结合的方法,分析低抽巷的合理空间及瓦斯抽采效果,最终确定低抽巷距15号煤层的合理间距为12 m左右,距回风巷的水平间距为10 m时,回风巷瓦斯浓度为0.39%,上隅角瓦斯浓度为0.40%,低抽巷是一种有效治理工作面上隅角瓦斯的技术手段。  相似文献   

18.
《煤炭技术》2021,40(4):69-73
针对黄岩汇煤矿"U"型通风综采工作面高抽巷层位高、错距大,导致的上隅角瓦斯超限问题,提出了高抽巷联合走向倾斜高位钻孔立体化抽采技术来治理上隅角瓦斯涌出。以黄岩汇煤矿15108、15105综采工作面为研究对象,现场跟踪考察了高抽巷和高位钻孔联合抽采的合理布孔层位及上隅角瓦斯治理效果。研究表明:高抽巷层位在50~60 m时,抽采瓦斯纯量稳定,平均抽采纯量可达到80 m3/min,可以有效地阻截邻近层瓦斯涌向采空区,降低采空区瓦斯总量。走向倾斜高位钻孔作为高抽巷的补充措施,其层位布置在煤层顶板以上25~30 m时,能够较好地发挥对采空区上隅角瓦斯流场的干预作用,达到较好的瓦斯防治效果。在联合层位下,高抽巷和高位钻孔联合抽采作用下,能够将上隅角瓦斯浓度控制在0.3%以下,该技术对相似条件下上隅角瓦斯治理具有指导作用。  相似文献   

19.
耿铭  徐青云 《煤炭工程》2019,51(12):82-85
为了验证地面L型钻孔抽采采空区瓦斯效果,以塔山矿8214综放工作面为研究对象,采用数值模拟和理论分析相结合的方法,确定了抽放钻孔布置位置和钻孔结构,设计了L钻孔抽采瓦斯方案。研究结果表明:塔山矿8214综放工作面垮落带高度为35m,裂隙带高度为60m,顶板最大悬露空顶长度为45m,垮落角为45°国钻孔应布置在距采煤工作面顶板40~60m,距帮26~30m,有效解决了工作面上隅角和低位抽采巷的瓦斯超限的问题|钻孔的终孔始终位于工作面上隅角的后上方,有效解决了钻孔与工作面推进在瓦斯治理中的时空匹配问题,达到了高效稳定治理采空区瓦斯的目的。  相似文献   

20.
为提高余吾矿瓦斯抽采效果,保证安全生产,通过布置高抽巷来降低煤层瓦斯含量。受邻近工作的采动的影响,对高抽巷的布置位置进行了研究;采用FLAC3D数值模拟的方法分别分析了S5207高抽巷距工作面回风巷和距煤层顶板不同位置的应力分布特征,进而综合确定最佳的布置参数。该研究有利于指导现场工程实际,保证高抽巷的安全使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号