首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用扫描电镜、能谱仪、拉力-剪切力测试仪等研究了不同镀Au厚度的镀Au键合Ag线Free Air Ball(FAB)特性和不同力学性能的镀Au键合Ag线对键合强度及其可靠性的影响规律,研究结果表明:镀Au键合Ag线镀层厚度过小会造成Electronic-Flame-Off(EFO)过程中的FAB偏球及球焊点形状不稳定,镀层厚度过大会导致FAB变尖;高强度、低伸长率会造成焊点颈部产生裂纹而造成焊点的拉力偏低并在颈部断裂,低强度、高伸长率引起颈部晶粒粗大进而降低颈部连接强度;镀Au键合Ag线颈部应力集中或内部组织结构不均匀,在冷热冲击周期性形变作用下,球焊点颈部产生裂纹并引起电阻增加,进而导致器件失效.  相似文献   

2.
激光喷射钎料球键合焊点热循环试验研究   总被引:1,自引:1,他引:0  
为研究激光喷射钎料球键合焊点的可靠性,用Sn3.0Ag0.5Cu钎料球对Au/Cu焊盘进行了激光喷射钎料键合试验,采用微强度测试仪、扫描电子显微镜、能谱分析仪研究了热循环条件对接头强度以及界面微观组织演变的影响.结果表明:采用激光喷射钎料键合技术焊盘表面Au层不能完全溶入钎料中,导致在界面处形成AuSn2+AuSn4多...  相似文献   

3.
基于温冲环境的Au—Al键合特性研究   总被引:1,自引:0,他引:1  
周继承  严钦云  杨丹  黄云 《功能材料》2006,37(10):1539-1541,1544
设计了Au-Al键合点的温度冲击试验,分析了键合点的力学特性、结构形貌及电学性能.结果表明Au-Al键合界面无裂纹产生,且机械性能良好,键合拉力在3.0~12.0g之间;高温导致Au-Al间形成了电阻率较高的化合物Au5Al2;最终引起键合电失效.对目前工艺水平下的Au-Al键合可靠性进行了评价,发现其寿命分布服从威布尔分布规律.用图估法估算取置信度为95%时,特征寿命η为 547h,形状参数m为3.83.基于器件可靠性评价规律预测出了该工艺条件下制备的Au-Al键合寿命,取可靠度为90%时,试验样品在常温25℃时的寿命为1.8×105h,约20年.  相似文献   

4.
键合丝键合界面研究进展   总被引:1,自引:0,他引:1  
采用引线键合技术对集成电路进行封装时,键合丝与Al焊盘存在异质界面问题,对电子器件的使用性能有很大的影响。本文综述了键合参数、界面金属间化合物(IMC)演变行为及工作环境等方面对界面键合强度和可靠性影响的研究进展,并展望了未来发展前景。  相似文献   

5.
光电子封装中,光导纤维的定位键合是一项关键技术,并且焊点界面处的显微组织对于焊点的可靠性有重要影响.本文选用80Au20Sn和52In48Sn钎料实现了激光钎焊条件下的光纤键合,采用扫描电子显微镜及能谱分析的方法对于两种钎料分别与硅片上的Au/Ti镀层和光纤上的Au/Ni镀层反应形成的界面微观组织形态及形成规律进行了分析.结果表明:对于80Au20Sn钎料,除了共晶组织ζ相+δ相,在AuSn/Au/Ti镀层界面形成了大量枝状的先共晶ζ相,在AuSn/Au/Ni镀层界面形成了针状的(Au,Ni)3Sn2;对于52In48Sn钎料,在InSn/Au/Ti镀层界面形成了连续层状的Au(In,Sn)2,随着输入能量的增加,其逐渐转变为不连续的块状化合物AuIn2,在熔融钎料流的作用下部分AuIn2脱离界面进入钎料中,在InSn/Au/Ni镀层界面形成了一层极薄的Au(In,Sn)2.  相似文献   

6.
结合Sn-3.5Ag和Sn-3.0Ag-0.5Cu两种无铅钎料研究了镀镍浸金层(Electroless Nickel Immersion Gold,ENIG)表面层对焊点界面反应以及力学性能的影响。结果表明,钎焊后在Sn-3.5Ag/ENIG/Cu界面主要生成(Ni_yCu_(1-y))_3Sn_4,在Sn-3.0Ag-0.5Cu/ENIG/Cu界面主要生成(Cu_xNi_(1-x))_6Sn_5。在Sn基钎料/ENIG(Ni)/Cu界面处生成金属间化合物的种类及形貌由焊点中Cu原子含量决定。在时效过程中,ENIG表面层中Ni层有效抑制了焊点界面处金属间化合物的生长,减缓了焊点剪切性能的下降。在钎焊过程中ENIG表面层中的Au层不参与界面反应而是进入钎料基体与Sn反应,但是在时效过程中Au原子向界面迁移并造成焊点界面金属间化合物成分和焊点剪切强度的明显变化。  相似文献   

7.
用扫描电镜和能量色散仪分别对In3Ag焊料焊点基体及其与铜基板界面IMC(Intermetallic compound)层的组织结构进行观察和分析,用力学试验机测试焊点的剪切强度,研究了电子封装中回流次数对In3Ag焊料微观组织和剪切性能的影响。结果表明:随着回流次数的增加,基体中二次相AgIn2显著长大,由颗粒状变为长条状,界面IMC层(成分为(Ag,Cu)In2)的厚度线性增加,其生长由界面反应速率和组元扩散速率混合控制,焊点剪切强度呈下降趋势,由1次回流的5.03 MPa降到5次回流的2.58 MPa;回流1、2、3次后焊点剪切断裂方式均为焊料内部韧性断裂,回流5次后断裂机制转变为韧脆混合断裂。  相似文献   

8.
利用扫描电镜、强度测试仪研究了?0.025 mm的不同Au含量对银基键合合金线键合强度及可靠性的影响,研究结果表明,对于Ag-Au键合合金线,随着Au含量增加,其无空气焊球成球性较好,球拉力和球剪切力均增加,热影响区长度降低,Ag-5Au键合合金线球拉力和球剪切力比Ag-1Au球拉力和球剪切力高出28.4%和28.6%; Ag-5Au键合合金线热影响区长度比Ag-1Au键合合金线短42.8%;Ag-5Au键合合金线拉力测试过程中中间位置断裂比例为96%,Ag-1Au键合合金线中间位置断裂比例为21%;含Au银基键合合金线冷热冲击后失效模式为颈部断裂,Ag-5Au键合合金线可靠性高于Ag-1Au键合合金线。  相似文献   

9.
InP/GaAs低温键合的新方法   总被引:4,自引:1,他引:3  
通过对 InP/GaAs 异质键合实验方法的研究,提出了包括表面活化处理、真空预键合和退火热处理的三步法,在350℃低温下实现了InP/GaAs异质材料的键合。界面电流 电压(I V)特性的研究表明,350℃样品的界面过渡层极薄,电子主要以隧穿方式通过界面,而450℃的扩散使得过渡层增厚,界面电流 电压特性可视为双肖特基二极管的反向串联。同时,对键合样品也进行了拉力测试,实验结果表明 450℃样品的键合强度优于350℃样品。最后,对InP/GaAs异质材料的键合机理进行了探讨。  相似文献   

10.
陈鑫 《硅谷》2014,(14):152-153
镀钯铜线(PdCu)是半导体封装中传统金线键合向铜线键合发展过程中出现的产物,与裸铜线(Bare Cu)键合相比,有着其特有的优劣势。本文通过分析研究发现两种铜线工艺参数有比较大的差别,第一焊点的可靠性测试结果基本相同,而第二焊点结果有一定的区别。本文主要实验数据研究分析镀钯铜线与裸铜线键合的区别,包括第一焊点空气球的可重复性、电火花(EFO)电流大小对焊接结果的影响、铝层挤出的比较。第二焊点的焊接表现,参数范围的变化。可靠性测试结果等。  相似文献   

11.
通过外向法制备纳米Ag颗粒/In-3Ag复合焊料, 研究在多次回流过程中, 添加不同含量的纳米Ag颗粒对In-3Ag焊料焊点基体组织和界面IMC层(intermetallic compound)的影响规律, 采用SEM、HRTEM、能量色散仪(EDS)和电子探针(EPMA)分别对焊点基体及IMC层的微观结构及成分进行观察和分析。研究结果表明: 纳米Ag颗粒能诱发晶粒成核, 多次回流后, 复合焊料基体中颗粒状二次相AgIn2没有明显长大现象; 通过塞积扩散通道和表面吸附效应, 纳米Ag颗粒能显著抑制焊料界面IMC层在多次回流过程的生长; 纳米Ag颗粒的合适添加量为0.5%(质量分数,下同), 当添加1%时, 颗粒团聚, 导致界面处出现球形AgIn2, 降低焊料的力学性能。  相似文献   

12.
杨平  毛育青  李芊芃  何良刚  柯黎明 《材料导报》2021,35(14):14156-14160
选用Sn64Bi35Ag1、Sn64.7Bi35Ag0.3和Sn99Ag0.3Cu0.7三种不同的钎料进行回流焊焊接试验,研究高Bi元素、低Ag元素钎料及低Ag钎料对Sn基钎料焊点微观组织及剪切性能的影响.结果表明:各焊点界面处均生成了 一层扇贝状的Cu6Sn5金属间化合物,在含Bi元素的钎料焊点中,Bi元素在焊点界面及内部聚集,导致界面处金属间化合物层的厚度增加,大量富Bi相呈脆性,降低钎料中的Ag含量对焊点中Bi元素的富集现象有减弱作用.Sn99Ag0.3Cu0.7钎料焊点界面处的金属间化合物层厚度最小,且焊点内部形成了细小的Ag3Sn相颗粒,共晶组织呈均匀分布,使得焊点剪切性能最优,其剪切强度达20.4 MPa.  相似文献   

13.
基于预测单向复合材料纵向拉伸强度的随机核模型,引入纤维单丝剩余强度二参数Weibull模型及纤维单丝与基体界面剩余强度模型,研究建立了单向复合材料纵向拉-拉疲劳寿命及剩余强度的预测模型。对经过一定次数拉-拉疲劳载荷循环后的纤维束抽取其纤维单丝进行剩余强度拉伸试验,建立了纤维单丝剩余强度的二参数Weibull模型,测试单向碳/碳(C/C)复合材料的纤维与基体界面强度。通过单向C/C复合材料算例分析表明,92.5%、90.6%和87.5%应力水平下对数预测寿命与对数试验寿命比值分别为0.79、1.00和1.11,表明所建立的寿命预测模型用于预测单向C/C复合材料疲劳寿命是可行的;纵向拉伸剩余强度预测值与试验值误差在10%以内,吻合较好,表明所提出的剩余强度预测模型具有较高的精度。  相似文献   

14.
由于铜线较之金线明显节约成本,所以对铜(Cu)线键合的关注日益增长。但是,对铜线易腐蚀及封装可靠性的考虑推动产业开发替代材料。当前,敷钯铜(PdCu)线由于其改善了可靠性而已广泛使用。本文中,我们用0.6密耳PdCu线和裸铜线做实验。研究了PdCu烧球(FAB)的钯分布和晶粒结构。观测到电子灭火(EFO)电流和覆盖气体类型对钯分布有重大影响。测量了烧球(FAB)的硬度及与钯分布和晶粒结构的关系。对首次键合工艺响应作了定性研究。用高温存储测试研究了钯对线键合能力和线金属间键合的影响。PdCu线的这些结果与裸铜线进行了比较。  相似文献   

15.
该文设计热循环和跌落耦合冲击试验,选用Sn_(96.5)Ag_(3.0)Cu_(0.5)(SAC305)和Sn_(63)Pb_(37)(Sn-37Pb)两种焊料制成焊球,以芯片尺寸封装(CSP)芯片为研究基底,焊盘分别进行Ni/Au化学电镀和有机保焊膜涂覆两种工艺处理,研究该环境对CSP微尺度焊点疲劳寿命的影响。结果表明:CSP微尺度焊点的失效模式是先快后慢,初期失效的变化率最高,产品具有固有的耐耦合冲击能力,无铅焊点更适用于低周热循环和低能级跌落耦合冲击环境,有铅焊点的抗跌落冲击能力较强,Ni/Au处理的焊盘配合无铅焊球制成的CSP器件具有更高的耐高周耦合冲击可靠性,焊点的失效机制是由离散的空洞逐渐向界面裂纹转变。  相似文献   

16.
邓惠 《硅谷》2008,(16)
拟通过对QFP焊点的抗拉强度的影响因素,PBGA焊点的质量检测及强度测试,CBGA焊点的可靠性进行较为系统、深入的研究,为焊点寿命预测提供研究数据支持和理论基础以及具有实用性的评价方法.  相似文献   

17.
置氢质量分数0.4%Ti600合金扩散连接   总被引:1,自引:0,他引:1  
进行了置氢质量分数0.4%的新型高温钛合金Ti600的真空扩散连接及接头力学性能测试,利用光学金相(OM)、扫描电镜(SEM)分析手段研究了连接工艺参数对界面孔洞弥合的影响以及拉伸断口特点.结果表明:氢元素能够显著提高扩散连接界面孔洞弥合率;随着连接温度的升高、连接时间的延长以及连接压力的增大,界面孔洞逐渐减少;当连接温度T=875℃,保温时间t=60min,焊接压力P=5MPa时,实现置氢Ti600的良好扩散结合,界面扩散孔洞消失;接头室温拉伸强度达1013MPa,为等条件下母材强度的96%,断口呈明显韧窝形貌.  相似文献   

18.
采用脉冲电压对硼硅玻璃与硅进行了阳极键合试验,结果表明采用脉冲电压能有效缩短硅/玻璃阳极键合时间并能适当降低键合温度。通过拉伸试验表明键合强度能达到预定强度要求,通过扫描电镜对键合界面的微观界面进行分析:表明玻璃/硅的键合界面有较明显的中间过渡层生成;通过分析:认为在玻璃/硅进行阳极键合过程中,脉冲电压产生的脉冲电场力对玻璃Na~+耗尽层中的O~(2-)向界面迁移扩散起到了反复驱动的作用,促进了O~(2-)向阴极表面迁移,增加了界面键合效率,缩短了硅/玻璃阳极键合时间,并降低了键合温度,从而促进了过渡层的形成。  相似文献   

19.
玻璃陶瓷电容器内电极结构及界面形貌对电性能有重要影响.采用磁控溅射法在介质层与银浆料电极间分别制备了Pt、Au、Cu和Ag金属膜内电极层,研究此电极层对Na2O-PbO-Nb2O5-SiO2玻璃陶瓷电容器电性能的影响.与单层浆料的电极结构相比,引入Pt、Au金属膜可以更有效地改善电性能:等效电容值增加25%,漏电流降低一个数量级.由SEM结果可知:Pt、Au、Cu膜与玻璃陶瓷紧密的界面接触能够抑制银向介质中扩散;然而,采用单层银浆料或引入Ag金属膜的样品界面多孔且银扩散严重.以上分析表明:Pt、Au金属膜电极层能够改善玻璃陶瓷电容器界面微观结构,有效抑制银的扩散,提高整体电性能.  相似文献   

20.
研究了稀土Ce对Sn-3.0Ag-0.5Cu合金显微组织及焊点剪切强度的影响规律.利用扫描电镜对铸态合金及焊点显微组织和断口形貌进行了观察和分析,利用能谱仪对铸态合金组分进行测试,采用力学试验机测试焊点的剪切强度.研究表明:当Ce添加量为0.25%时,铸态合金显微组织中β-Sn相与Ag3Sn相明显细化,出现了少量的Sn-Ce相及Ce的偏聚区;采用气雾化粉末所配制的焊膏进行回流焊,添加Ce后,焊点基体组织比未添加时明显优化;经过气雾化制粉,Ce向粉末表面富集并极易氧化,导致焊粉氧含量升高,使得回流焊接后焊料/Cu界面IMC层附近孔洞增加,焊点剪切强度降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号