首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
刘鹏 《特殊钢》2019,40(4):16-18
F42CrMo4钢风电齿圈的生产工艺流程为热装铁水-100 t EAF-LF-VD-Φ500 mm CCM-缓冷-锻制成Φ2000~3900 mm环形锻件。对探伤不合格的风电齿圈缺陷部位运用超声波进行定位取样,分析表明,氧化铝类夹杂物以及铸坯疏松缺陷,是造成部分批次风电齿圈用F42CrMo4钢探伤不合格的主要原因。通过控制电弧炉终点碳≥0.15%,LF终点喂钙线0.50 kg/t,喂钙后软吹氩≥10 min,VD后氩气流量由2×25 L/min增加至2×30 L/min,控制钢水过热度10~18℃等工艺措施使钢中氮、氢和氧含量分别由原≤80×10-6、≤1.5×10-6和≤20×10-6降低到≤75×10-6、≤1.2×10-6和≤15×10-6,锻件探伤合格率提高到98.95%以上。  相似文献   

2.
通过几何相似比0.29:1的水模型试验了湍流抑制器+挡墙+挡坝和湍流抑制器+挡墙+过滤器两种控流装置的钢液流动,研究了通道式过滤器对58t中间包钢液流场的影响。结果表明,原中间包(湍流抑制器+挡墙+挡坝)活塞区体积小,死区体积高达29.53%,优化中间包加入过滤器后(湍流抑制器+挡墙+过滤器)短路流基本消失,钢液的实际平均停留时间延长,死区体积由29.53%减小至13.52%。50t中间包,230mm×1100mm连铸板坯,拉速1.25~1.30m/min工业生产结果表明,使用过滤器后,中间包浇注区的夹杂物尺寸明显小于冲击区,中间包浇注区T[O]由原86×10-6降至30×10-6,连铸坯大多数夹杂物尺寸≤10μm,没有发现≥30μm夹杂物。  相似文献   

3.
通过电弧炉留钢操作,控制EAF终点[C]≥0.10%,LF精炼白渣时间≥30 min,利用淬透性预测模型微调钢水中元素含量,控制中间包钢水过热度15~30℃、结晶器、铸流和末端电磁搅拌等工艺措施,试制的Φ110mm~Φ150 mm 22CrMoH齿轮钢(/%:0.20~0.22C,0.26~0.28Si,0.73~0.75Mn,0.007~0.012P,0.001~0.004S,1.05~1.09Cr,0.37~0.39Mo)的氧含量为8×10-6~10×10-6,轧材J15△HRC值≤4,夹杂物≤1.0级,低倍组织≤1.0级。  相似文献   

4.
通过对37Mn5钢(%:0.39C、1.30Mn)Φ85 mm×8 mm管外折叠缺陷的分析,得出钢晶界处存在尺寸~20μm的硅酸盐和SiO2等脆性夹杂物是钢管外折叠形成的主要原因。通过控制转炉出钢后钢包顶渣厚度≤50mm,LF精炼(FeO)≤1%,白渣时间≥15 min,软吹氩≥10 min,全程保护连铸,使[O]为(11.6~17.1)×10-6,钢中夹杂级别A类为0~2.0,B、C类为0,D类为0.5~1.0,有效地控制钢管外折叠的发生。  相似文献   

5.
李峰 《特殊钢》2011,32(2):52-53
重轨U71Mn钢(%:0.66~0.76C、0.15~0.35Si、1.10~1.40Mn、≤0.030P、≤0.030S)的冶金工艺流程为100 t转炉-LF(VD)-280 mm×380 mm连铸。研究了转炉至中间包各工序[N]及影响因素,氮含量对钢轨力学性能的影响。结果表明,随钢中氮含量由54×10-6增加至94×10-6,钢轨的断裂韧性由34.7~38.1 MPa m1/2降至28.1~31.5 MPa m1/2。LF精炼时将增碳剂由沥青焦改为无烟煤时,钢中氮含量可控制≤64×10-6,平均氮含量为50.9×10-6。  相似文献   

6.
通钢65 t Consteel EAF-LF-CC 工艺生产40Cr 钢水洁净度的分析   总被引:1,自引:0,他引:1  
通钢通过65 t Consteel电弧炉-65 t LF-150 mm×150 mm方坯连铸流程生产40Cr合金钢。检验结果表明,通过LF精炼,40Cr钢水中的氧含量由精炼前227×10-6降至35×10-6;而连铸时中间包钢中的氧含量增加至51×10-6,铸坯的氧含量为54×10-6。因此,进一步预防钢水从钢包至中间包及中间包内钢水的二次氧化和去除钢中大型夹杂物,是提高钢水洁净度和降低[O]的关键步骤。  相似文献   

7.
2 mm窄带钢Q195L (/%: ≤0.08C、0.05~0.10Si、0.30~0.40Mn、≤0.035P、≤0.035S)的生产流程为80 t转炉-钢包合金化和软吹氩-150 mm×150 mm方坯连铸-窄带轧制工艺。金相、扫描电镜、能谱仪等对窄带钢边裂分析表明,边裂处存在FeO和网状裂纹。通过控制钢水氧含量从原≤80×10-6 降至≤60×10-6 ,吹氩时间从≥3min增至≥5 min,中间包钢水过热度从原25~35℃降至15~25℃,加热炉两侧温差≤40℃,减小冷却水嘴间距,增加一次立轧压下量2~5 mm等工艺措施,防止了该钢边裂发生,取得了良好的生产效果。  相似文献   

8.
为了减轻铝脱氧GCr15轴承钢中B类和D类夹杂物的危害,开展了VD低碱度渣和正常碱度渣精炼的对比工业试验研究。结果显示,与正常碱度精炼渣相比,碱度为1.96的精炼渣可使连铸坯中塑性夹杂物比例由14.81%上升为40.65%;同时,全氧(T. O)含量由7.7×10-6下降至4.9×10-6,全铝(T. Al)和酸溶铝(AlS)含量由279×10-6、210×10-6分别下降至80×10-6、75×10-6。热力学计算表明,低碱度精炼渣引起钢液中[Si]活度增大使复合夹杂中Al2O3(inc)含量下降,钢中酸溶铝(AlS)含量落在与塑性夹杂物平衡对应的等铝浓度线范围内,理论计算与试验结果吻合。VD低碱度渣精炼有利于实现轴承钢夹杂物塑性化控制。  相似文献   

9.
时速350 km高速钢轨要求钢中全氧含量T[O]≤20×10-6,非金属夹杂物B、C、D类≤1.0级。国内在重轨钢冶炼中,通常采用无铝脱氧工艺,即采用SiCaBa合金强化脱氧,形成了低熔点的Mn-Al-Si-Ba-Ca多元型氧化物夹杂,该类夹杂物在精炼中全部排出钢液。研究了铁水预处理脱硫-150 t顶底复吹转炉-LF-VD-280 mm ×380 mm连铸流程冶炼钢轨钢U71MnG时的夹杂物行为,包括无铝脱氧工艺钢轨钢中氧化物夹杂的组成及特征,转炉终点[C]对钢水氧活度的影响以及LF精炼渣碱度和VD后期软吹氩搅拌对钢氧含量和夹杂物的影响。结果得出,钢轨头部的≤20μm氧化物夹杂为精炼时二次脱氧产物,通过控制转炉终点[C]>0.15%,控制精炼渣碱度(CaO)/(SiO2)=2.5~3,∑(FeO+MnO)≤1.0%可有效降低钢轨钢中氧化物的数量和尺寸。  相似文献   

10.
刘鹏 《特殊钢》2018,39(3):25-27
生产的高压锅炉用钢SA-210A1(/%:0.08~0.11C,0.22~0.24Si,0.72~0.74Mn,0.007~0.010P,0.004~0.005S,0.010~0.015V,0.025~0.035Ti,0.012~0.018Alt)的冶金工艺流程为55%铁水+废钢-100 t EAFLF-VDΦ500 mm坯连铸-轧制成Φ130mm圆钢。通过低铝脱氧工艺-EAF终点控制[C]≤0.06%,[P]0.006%~0.010%,出钢加石灰12 kg/t,AD粉(/%:10~13A1,55~60Al2O3,5~8SiO2, 5~8Mg0)3 kg/t,700%Al钢芯铝3 kg/t预脱氧;LF采用5.76~6.06高碱度Al2O3渣系,LF终点喂0.40 kg/t钙线,软吹≥10 min;中间包钢水过热度15~25℃连铸结晶器和末端电磁搅拌,拉速0.31~0.32 m/min,铸坯缓冷≥48 h等工艺措施,SA-210A1钢中的[O]16×10-6~ 24×10-6,[N]65×10-6~80×10-6,[Alt]≤0.020%,铸坯和热轧圆钢低倍组织和非金属夹杂物均满足要求  相似文献   

11.
毕胜  王鑫  陈修君  何金泽  宫哲 《特殊钢》2022,43(4):46-49
TiN夹杂是导致C82DA帘线钢拉拔成丝或捻股过程中断丝的主要原因之一。采用110 t BOF-LF-150 mm×150 mm CC的冶炼工艺生产C82DA钢。经对TiN析出条件的研究,可通过降低钢液中的Ti和N含量来减少TiN夹杂。通过控制转炉下渣量,使用Ti含量低的合金及渣料,控制钢包残渣量等措施来降低钢液中Ti含量;采用降低BOF出钢时间至≤4 min,维护好出钢口避免散流和细流,对连铸长水口进行优化等措施降低增N量。可控制C82DA钢中Ti含量≤2×10-6和N含量≤50×10-6,使TiN夹杂得到了显著降低。  相似文献   

12.
吕安明  刘鹏  刁峰  闻小德 《特殊钢》2018,39(1):51-53
生产的4Cr5MoSiV1钢(/%:0.3~80.40C,0.88~0.92Si,0.42~0.44Mn,0.001~0.003S,0.007~0.014P,5.00~5.55Cr,1.37~1.40Mo,0.98~1.00V,0.015~0.025Alt)的工艺流程为65%铁水+35%废钢-100t EAF-LF-VD-Φ500mm坯连铸-Φ120mm圆钢轧制。通过控制EAF终点[C]0.06%~0.10%,终点[P]0.006%,出钢加1kg/t铝块预脱氧,LF精炼渣碱度2.5~3.0,喂钙线后软吹≥10min,VD≤67Pa,100×2L/min氩气搅拌≥15min,中间包钢水过热20~30℃,连铸结晶器电磁搅拌(310A,1.5Hz),保护浇铸,拉速0.34~0.35 m/min等工艺措施,10炉4Cr5MoSiVl钢中[O],[N]和[H]分别为10×10-6~12×10-6,72×10-6~80×10-6,1.2×10-6~1.4×10-6,各项指标均满足协议要求。  相似文献   

13.
石油套管用钢(/%:0.26~0.29C,0.25~0.35Si,0.40~0.50Mn,≤0.009P,≤0.004S,0.95~1.05Cr,0.09~0.11V,0.02~0.04Al,0.015~0.020Ti,≤0.0060N)的生产流程为铁水预处理-120 t BOF-吹氩-LF-喂CaSi线-RH-合金化-喂CaSi线-软吹氩-Φ220 mm圆坯连铸工艺。通过热力学分析得出钢中N含量超过50×10-6以及工业试验得出生产的圆铸坯中的N含量为67×10-6时,在铸坯中易形成2μm以上的TiN夹杂。通过控制BOF终点[N]≤30×10-6,LF终点[S]≤25×10-6,[O]≤25×10-6,[N]≤35×10-6,RH合金化后终点[N]≤35×10-6,[H]≤1.5×10-6,稳定喂CaSi线速度300~400 m/min,控制中间包[N]≤40×10-6,严格连铸保护浇铸工艺,则铸坯中的N含量≤50×10-6,钢中TiN夹杂数量显著下降,未发现大尺寸TiN夹杂物。  相似文献   

14.
研究了铁水脱硫预处理-80 t顶底复吹转炉-LF-RH-280 mm×325 mm方坯连铸流程生产XGM6钢(/%:0.012C, ≤0.012Si, ≤0.08Mn,  ≤0.015P, ≤0.010S)等超低碳铝镇静钢时水口堵塞的原因和防止措施。通过控制转炉终点[O]≤600×10-6, LF顶渣为高铝渣+电石,RH-OB脱碳后加铝粒脱氧,控制RH终点氧含量20×10-6~30×10-6, RH终点[Al]s≤0.009%,中间包钢水过热度25~40℃,[Al]s≤0.004%等工艺措施,基本避免超低碳铝镇静钢水口堵塞,连浇炉数由不足2炉提高到8炉以上。  相似文献   

15.
易正明  肖慧 《特殊钢》2013,34(2):45-47
钢厂试验的低碳铝镇静钢(/%:0.036~0.037C、0.009Si、0.173~0.176Mn、0.012~0.013P、0.005~0.006S)生产流程为200 t LD转炉-钢包吹Ar精炼(LBAr)-230 mm×1 300 mm板坯连铸工艺。通过LD转炉挡渣出钢,并加入Mn-Fe、铝丸进行预脱氧和合金化3 min,钢水T[O]和[N]分别为91.8×10-6和19.4×10-6,在氩站经10~12 min 25~45 m3/h流量吹氩和3~5 min 15~25 m3/h的软吹氩后,T[O]降至42.3×10-6,[N]为22.0×10-6,中间包和铸坯T[O]分别为38.3×10-6和28.9×10-6,[N]分别为23.6×10-6和26.5×10-6。该流程生产的铸坯满足T[O]≤30×10-6的内控要求。经氩站精炼后,显微夹杂物去除率为30.0%,而大型夹杂物去除率达58.7%;显微夹杂物主要为脱氧产物Al2O3;大型夹杂物主要为SiO2、Al2O3、SiO2-Al2O3、CaO-SiO2-Al2O3。  相似文献   

16.
炼钢厂冶炼20CrMnTi,45,40Cr,GCr15钢的生产流程为70 t BOF-LF-VD-220 mm×220 mm CC工艺。由22炉20CrMnTi,40Cr和45钢中氮含量分析得出转炉出钢后钢中平均氮含量-[N]为21.70×10-6,LF精炼后平均[N]48.95×10-6,中间包平均[N]63.62×10-6。通过将铁水比从85%提高到92.3%,控制转炉终点[P]≤0.008%,出钢前钢包充氩,LF精炼快速形成泡沫渣,渣层厚100~120 mm,防止钢水吸氮,连铸时采用长水口控制吹氩量等措施,6炉GCr15钢冶炼结果表明,LF精炼后[N]为51.8×10-6~60.2×10-6,VD后[N]29.1×10-6~33.9×10-6,钢材中氮含量为31.8×10-6~40.0×10-6,满足用户对钢材冷加工的需要。  相似文献   

17.
天津钢管公司X65等洁净管线钢的生产流程为100t UHP EAF-LF-RH-Φ310mm~Φ500 mm CC工艺通过电弧炉配加35%~40%铁水,控制Al消耗量1.85kg/t时渣量不低于22kg/t,控制精炼渣指数(CaO/SiO2/Al2O3)0.18~0.32,RH喷粉脱硫,电弧炉终点[C]≥0.05%,熔清钢水磷含量≤0.005%,延长泡沫渣持续时间,RH高真空处理时间≥10min,钙处理后软搅拌10~15 min,使用高碱度中间包覆盖剂等措施可使10MnVNbMo等X65管线用无缝钢管的洁净度达≤0.001%S、≤0.008%P、≤75×10-6 N、≤20×10-6O、≤1.5×10-6H。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号