首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper presents a control strategy based on adaptive feedback linearization intended for variable speed grid‐connected wind energy conversion systems (WECS). The proposed adaptive control law accomplishes energy capture maximization by tracking the wind speed fluctuations. In addition, it linearizes the system even in the presence of turbine model uncertainties, allowing the closed‐loop dynamic behaviour to be determined by a simple tuning of the controller parameters. Particularly, the attention is focused on WECS with slip power recovery, which use a power conversion stage as a rotor‐controlled double‐output induction generator. However, the concepts behind the proposed control strategy are general and can be easily extended to other WECS configurations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Recently, wind power production has been under the focus in generating power and became one of the main sources of alternative energy. Generating of maximum power from wind energy conversion system (WECS) requires accurate estimation of aerodynamic torque and uncertainties presented in the system. The current paper proposed the generalized high‐order disturbance observer (GHODO) with integral sliding mode control (ISMC) for extraction of maximum power via variable speed wind turbine by accurate estimation of wind speed. The assumption in previous works that considers the aerodynamic torque as slow‐varying is not applicable for the real system. Therefore, the high‐order disturbance observers were designed for precise estimation of uncertainties with fast‐changing behavior. A robust control system was designed to control the speed of the rotor at the optimal speed ratio. The obtained simulation results have shown the better performance characteristics than conventional linear quadratic regulator (LQR) approach. The stability of the proposed algorithm was proven by Lyapunov stability anaysis. Simulations results were obtained in Matlab/Simulink environment.  相似文献   

3.
《Journal of power sources》2006,161(1):707-722
Recent research and development of alternative energy sources have shown excellent potential as a form of contribution to conventional power generation systems. In order to meet sustained load demands during varying natural conditions, different energy sources and converters need to be integrated with each other for extended usage of alternative energy. The paper focuses on the combination of wind, fuel cell (FC) and ultra-capacitor (UC) systems for sustained power generation. As the wind turbine output power varies with the wind speed: an FC system with a UC bank can be integrated with the wind turbine to ensure that the system performs under all conditions. We propose herein a dynamic model, design and simulation of a wind/FC/UC hybrid power generation system with power flow controllers. In the proposed system, when the wind speed is sufficient, the wind turbine can meet the load demand while feeding the electrolyzer. If the available power from the wind turbine cannot satisfy the load demand, the FC system can meet the excess power demand, while the UC can meet the load demand above the maximum power available from the FC system for short durations. Furthermore, this system can tolerate the rapid changes in wind speed and suppress the effects of these fluctuations on the equipment side voltage in a novel topology.  相似文献   

4.
This paper presents a high‐order sliding mode control strategy that aims to optimize the power conversion efficiency of a wind energy conversion system within the partial load zone of operation. The main challenges of this control problem are related to the random variations of the wind speed, the nonlinear nature of the whole system, usual model uncertainties and external disturbances. For all these reasons, the robustness, simplicity and low computational burden of the proposed super‐twisting algorithm result very attractive in this context. Simulation results that show the achievement of the desired characteristics are provided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series for power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state‐of‐the‐art is to use static power curves for the purpose of power system studies, but the idea of the proposed wind turbine model is to include the main dynamic effects in order to have a better representation of the fluctuations in the output power and of the fast power ramping especially because of high wind speed shutdowns of the wind turbine. The high wind speed shutdowns and restarts are represented as on–off switching rules that govern the output of the wind turbine at extreme wind speed conditions. The model uses the concept of equivalent wind speed, estimated from the single point (hub height) wind speed using a second‐order dynamic filter that is derived from an admittance function. The equivalent wind speed is a representation of the averaging of the wind speeds over the wind turbine rotor plane and is used as input to the static power curve to get the output power. The proposed wind turbine model is validated for the whole operating range using measurements available from the DONG Energy offshore wind farm Horns Rev 2. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A wind generator equipped with hydraulic energy storage (WG‐HES) uses hydraulic transmission systems instead of gearbox transmissions, thus eliminating high‐power converters and reducing the tower‐top cabin weight. When there is no wind or the wind speed is extremely low, the pressured oil released by accumulators is used to drive a motor to operate at a constant speed, thereby generating constant‐frequency power. However, few studies have examined the constant speed control characteristics for generating electricity using only an accumulator group. In this study, a combined constant speed (CCS) proportional–integral–derivative (PID) control method based on “variable displacement and throttling” is proposed, which includes two closed loops and one regulating loop. First, a simulation model of the CCS PID control method for a variable motor was established in the Simcenter Amesim program. The influence of different PID parameters on the anti‐interference ability of the constant speed control of the motor was analyzed under a given load step. Then, we obtained the range of control parameter values and a set of optimal values. Second, the effectiveness of the CCS control method and the accuracy of the simulation results were verified on a 600‐kW WG‐HES system prototype. The results verified that the CCS control method has good anti‐interference ability and can meet the requirements of constant speed control for a variable motor under the best PID parameters. These results can provide a basis for developing control strategies for WG‐HESs when there is no wind or at low wind speeds.  相似文献   

7.
This paper presents a general model—based on the Monte Carlo simulation—for the estimation of power system uncertainties and associated reserve and balancing power requirements. The proposed model comprises wind, PV and load uncertainty, together with wind and PV production simulation. In the first stage of the model, wind speed and solar irradiation are simulated, based on the plant disposition and relevant data. The second stage of the model consists of wind speed, PV power and load forecast error simulation, based on the associated statistical parameters. Finally, both wind and PV forecast error are combined with the load forecast error, resulting in the net uncertainty. This net uncertainty, aggregated on a yearly level, presents a dominant component in balancing power requirements. Proposed model presents an efficient solution in planning phase when the actual data on wind and PV production is unavailable.  相似文献   

8.
This paper deals with power regulation in variable speed wind energy conversion systems. The importance of power control in the stall region is stressed. This mode of operation is characterized by a non‐minimum phase behaviour. A variable structure controller is described that provides stability by means of speed feedback and is robust to grid disturbances and model uncertainties. Performance of the controller is investigated. A compromise arises in the design of the speed feedback gain between high and low frequency wind components rejection. Furthermore, a cut‐off frequency of the wind velocity measurement is obtained that minimizes the effect of turbulence on power regulation. Simulation results are presented, corroborating the features of the control strategy. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Providing electricity to a group of remote domestic or industrial customers can be achieved by a grid connection, or by an off‐grid (island) generator. While the former can become costly and will likely be prone to disruption, the latter is normally based on fossil fuels, which makes fuel sourcing and transport critical. To overcome these obstacles, a novel micro‐scale biomass generation plant was developed. This plant uses locally available renewable biomass feedstock to generate decentralized power at the point of demand and without the necessity of a grid connection. In this paper, load simulations on the basis of a process simulation model of the plant are performed to achieve a continuous match of supply and demand. It is analysed which load characteristics and fluctuations have to be expected when generating for a remote group of domestic customers, and it is evaluated how the plant needs to be operated to always provide sufficient power. Additionally, the fuel storage system of the plant system is investigated: The plant does not employ electrical storage, but instead matches demand and supply by means of internal usage of heat and power and through fuel storage. Relative and absolute storage levels as well as the storage charge/discharge cycles are analysed, and it will be shown that the plant can easily accommodate severe load fluctuations. Finally, the plant load factors are evaluated, and the findings show that this design is an interesting alternative to common island generators or to a conventional grid connection for remote customers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes a detailed modelling approach to study the impact of wind power fluctuations on the frequency control in a non‐interconnected system with large‐scale wind power. The approach includes models for wind speed fluctuations, wind farm technologies, conventional generation technologies, power system protection and load. Analytical models for wind farms with three different wind turbine technologies, namely Doubly Fed Induction Generator, Permanent Magnet Synchronous Generator and Active Stall Induction Generator‐based wind turbines, are included. Likewise, analytical models for diesel and steam generation plants are applied. The power grid, including speed governors, automatic voltage regulators, protection system and loads is modelled in the same platform. Results for different load and wind profile cases are being presented for the case study of the island Rhodes, in Greece. The scenarios studied correspond to reference year of study 2012. The effect of wind fluctuations in the system frequency is studied for the different load cases, and comments on the penetration limits are being made based on the results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a fuzzy set based modeling of wind power generation. The wind power generation has been solved by the proposed fuzzy generation for an island in Taiwan. The cost effectiveness of wind power generation is then evaluated by calculating the avoided generation cost of diesel generators. The load survey study has been performed to find the typical daily load patterns of various customer classes. With the typical load patterns and total energy consumption by each customer class, the load composition and daily power profile of the isolated power system are therefore derived. The wind power generation of eight wind turbines and the corresponding avoided generation cost is estimated by the fuzzy generation model according to the hourly wind speed. The power generation and the corresponding cost of diesel generators required to meet the system power demand with wind power generation have therefore been obtained. It is found that the wind power generation can economically and effectively substitute the generation cost of the diesel power plant and provide the partial power supply capability for the net peak load demand.  相似文献   

12.
This paper proposes a stochastic scheduling model to determine optimal operation of generation and storage units of a virtual power plant (VPP) for participating in a joint energy and regulation service (RS) market under uncertainty. Beside electricity, the VPP provides required RSs according to the probability of delivery request in the electricity market. A new model for providing RS is introduced in which the dispatchable generation units are financially compensated with their readiness declarations and will be charged/paid for their real‐time down/up regulations. Besides, the VPP sets up incentive price‐quantity curves to benefit from the potential of demand side management in both energy and RS market. Within the model presented here, the VPP consists of two types of generation units: wind turbine and standby diesel generator; the latter is modeled by considering CO2‐emission penalty costs. The given uncertainties are divided into two parts. Firstly, the uncertainties from the energy market price are simulated using information gap decision theory to evaluate the risk‐based resource scheduling for both risk‐taker and risk‐averse VPP. Other uncertainties affecting decision making such as wind turbine generation, load, regulation up/down calling probabilities, and regulation market prices are modeled via scenario trees. Three typical case studies are implemented to validate the performance and effectiveness of the proposed scheduling approach.  相似文献   

13.
Nowadays, renewable energy systems have come up with more potential in power generation so as to meet the power demand. Among all the renewable systems, the wind energy generating system is believed to be at the peak. However, the wind energy‐based microgrid system is associated with many problems such as fluctuations in output voltage due to the fluctuated wind speeds and harmonics generations in the system. To address these issues, this article proposes a new method in order to achieve harmonic mitigation across its output by maintaining constant voltage. Nevertheless, particular attention has been given to the form and function of modular multilevel converter with multi‐winding transformer connected to the grid. Modular multilevel converter has been implemented with an advanced voltage controller tuned to control the voltage at its output. Also, a new system topology has been introduced with two wind turbines that are interconnected to multi‐winding transformer through asynchronous generators. The proposed system has been implemented with constant and variable wind speeds, and their respective results have also been analysed. The proposed scheme shows its effectiveness by theoretical calculations, verified by simulation and experimental results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A. Garcés  M. Molinas 《风能》2012,15(6):827-845
Optimization and reliability are two important aspects in design and operation of wind parks either for offshore as for onland emplacements. However, offshore locations demand conscientious effort in optimizing the size and the weight of each component in the energy conversion system because of the high investment and maintenance costs related with the supporting structures and transportation respectively. Achieving these two objectives requires the combination of different optimization stages, which consider a suitable design of the entire conversion system with innovative and more e?cient power electronic devices, optimized topology of the offshore grid and customized control strategies for optimizing the operation of the park. This paper presents an energy conversion concept for wind turbines on the basis of a reduced matrix converter (RMC) that will enable series direct current architecture in offshore wind parks thus preventing the need for offshore platforms. The RMC is built with bidirectional semiconductors that give reduced losses because of both superior topology and more e?cient semiconductors. The proposed conversion topology is tested in stationary state and transient operation. In addition to operational features of the concept, control and operation of a wind park with several turbines are presented. Dynamic operation of the turbine as well as the high‐voltage direct current transmission line effects are considered. Three types of models are therefore developed. First, an accurate and detailed model for analyzing one single turbine with the converter operated at high‐frequency switching is presented. This model considers a new modulation for the RMC. A second and simpli?ed model is used for small signal analysis. This model permits to simulate several series‐connected cluster during transient. Finally, an optimal direct current load ?ow model is used for evaluating stationary state operation. Results show the technical feasibility of the proposed concept and their advantages over conventional topologies. The paper also discusses the technological challenges that this type of offshore grid architecture will bring. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The method takes into account the constraint that the wind generation must not exceed a certain percentage of the system load, which is imposed for reliability reasons. The method efficiently computes the statistics of the wind generation and the diesel plant loading based on the statistics of the wind speed and the system load demand. The performance of the method is demonstrated with computational results. An example of obtaining the optimum wind penetration for an existing diesel system is presented  相似文献   

16.
在实际的变速变桨风力机系统中,模型的强非线性、满负载工况下不稳定的风速及系数参数测量误差的存在,使传统的控制方法难以取得满意的控制效果,因此针对满负载工况下的风能转换系统提出了一种基于多变量动态矩阵控制的控制策略,先构建风能转化系统模型,将时变非线性模型在平衡点处线性化,得到其输入输出偏移量的线性化模型;再利用动态矩阵算法,间接控制发电机转速与功率在额定值处稳定;最后在风轮与电机转动惯量测量误差为40%的情况下进行仿真。结果表明,所得动态矩阵控制器具有较小的波动与较好的鲁棒性,能有效减小系统参数误差的影响,可在安全的工作范围内提供期望的性能,有助于提高电力系统的效率和电能质量。  相似文献   

17.
无刷双馈风力发电机组的自抗扰功率解耦控制   总被引:1,自引:0,他引:1  
对无刷双馈风力发电机组稳态运行时的功率分配关系进行了详细分析,在此基础上确定了最大风能捕获的控制策略.将自抗扰控制应用到无刷双馈电机有功功率与无功功率的解耦控制,将功率控制系统分解为有功功率子系统和无功功率子系统,从而建立了风力发电机组完整的功率控制模型.基于Matlab/Simulink的仿真结果表明无刷双馈风力发电机组自抗扰控制成功实现了有功功率与无功功率的解耦控制,不仅能够实现最大风能捕获,而且可以根据电网的实际需求调节机组无功功率的输出,验证了控制算法的有效性.  相似文献   

18.
The power management strategy (PMS) plays an important role in the optimum design and efficient utilization of hybrid energy systems. The power available from hybrid systems and the overall lifetime of system components are highly affected by PMS. This paper presents a novel method for the determination of the optimum PMS of hybrid energy systems including various generators and storage units. The PMS optimization is integrated with the sizing procedure of the hybrid system. The method is tested on a system with several widely used generators in off-grid systems, including wind turbines, PV panels, fuel cells, electrolyzers, hydrogen tanks, batteries, and diesel generators. The aim of the optimization problem is to simultaneously minimize the overall cost of the system, unmet load, and fuel emission considering the uncertainties associated with renewable energy sources (RES). These uncertainties are modeled by using various possible scenarios for wind speed and solar irradiation based on Weibull and Beta probability distribution functions (PDF), respectively. The differential evolution algorithm (DEA) accompanied with fuzzy technique is used to handle the mixed-integer nonlinear multi-objective optimization problem. The optimum solution, including design parameters of system components and the monthly PMS parameters adapting climatic changes during a year, are obtained. Considering operating limitations of system devices, the parameters characterize the priority and share of each storage component for serving the deficit energy or storing surplus energy both resulted from the mismatch of power between load and generation. In order to have efficient power exploitation from RES, the optimum monthly tilt angles of PV panels and the optimum tower height for wind turbines are calculated. Numerical results are compared with the results of optimal sizing assuming pre-defined PMS without using the proposed power management optimization method. The comparative results present the efficacy and capability of the proposed method for hybrid energy systems.  相似文献   

19.
This paper describes the development of a general probabilistic model of a diesel-wind energy conversion system (DWECS) composed of several diesel units, several wind turbines (wind farm), and battery storage feeding a load. The model allows the simulation of a diesel system with a wind farm of different wind turbine types considering system stability, and outages due to hardware failure and primary energy fluctuations. It is based on a modification of the convolution method, which considers a given penetration level selected by the utility for stability consideration. The production costs of the diesel units are then deduced from the expected energy not supplied (EENS) using a unit de-convolution in reverse economic order. A methodology is also presented to determine the size of the battery storage based on the excess wind energy available during operation, or that disconnected for stability consideration, while accounting for the charging/discharging cycles  相似文献   

20.
This paper concerns power regulation of variable-speed wind energy conversion systems. These systems have two regions of operation, depending on the tip speed ratio of the wind turbines. They are distinguished by a minimum phase behavior in one of these regions and a nonminimum phase one in the other. A sliding mode control strategy is proposed that assures stability in both regions of operation and imposes the ideally designed feedback control solution in spite of model uncertainties. Moreover, power regulation by the proposed sliding control in the minimum phase region is completely robust to wind disturbances and parameter uncertainties  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号