首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A good understanding of the natural flow regime plays an important role in many hydrological studies. Also important in such studies is the quantification of environmental flows. This study focuses on flow metrics that best describe the natural flow regime and the hydrological characteristics for rivers in New Brunswick (Canada) as well as quantifying environment flows for these rivers. New Brunswick rivers have a mean annual flow (MAF) of approximately 23 L s?1 km?2, which is also reflective of the water availability. The frequency analysis showed that low flows (T = 2–50 years, where T is the recurrence interval) were all below the 10% MAF. Environmental flow methods based on the MAF and flow duration analysis (median flow) showed good regional regression equations. However, flow duration methods showed high variability especially at flows between Q80 and Q100. Flow targets based on the 25% MAF, Q50 and 70% Q50 were used to estimate environmental flows, particularly during low‐flow periods (winter and summer). Results showed that the 70% Q50 method should be used with caution in summer as this method provided flows in the range of 15–16% of MAF. Other methods provided environmental flows higher than 15% MAF, thus, providing better flow protection for aquatic habitat. When comparing water availability for off‐stream use (river flow–environmental flow), different parts of New Brunswick were found to be deficient in flows (i.e., river flows less than environment flows—no extractable water) during the summer and winter low‐flow periods.  相似文献   

2.
窟野河流域径流演变及其驱动因素分析   总被引:1,自引:0,他引:1  
以黄土高原典型流域窟野河流域为对象,采用有序聚类方法,诊断了近60 a来实测径流演变的阶段性特征,在此基础上,分析了不同阶段实测径流与气候要素之间的响应关系,初步揭示了径流演变的驱动机制。结果表明:近60 a来窟野河流域实测径流量以1980年和1998年为分割点总体呈现阶段性减少趋势,其中,1999年以来减少尤其明显。不同阶段的年降水、径流关系有一定差异,相比而言,汛期(6-10月份)的月降水量与径流量具有相对较好的相关关系;非汛期(11-5月份)的月降水径流关系点群散乱,在月平均气温低于5℃时,月径流量与月平均气温具有较好的正相关性。窟野河流域汛期产流受高强度降水支配,人类活动对河川径流演变的影响有增大趋势。  相似文献   

3.
河道生态需水量的确定对于河流生态系统健康至关重要,为计算大洋河河道内生态需水量,基于大洋河岫岩和沙里寨两个水文站1970-2012年流量资料,分别运用最小生态径流法以及本文提出的保证率为90%(枯水期)、75%(平水期)、60%(丰水期)的适宜生态径流法计算了大洋河河道内生态需水量,并运用Tennant法对计算结果进行评价分析并结合实测流量资料对大洋河生态径流满足度进行了分析,研究结果表明:适宜生态径流量可以使得大洋河河道内的生态环境状况在丰水期和枯水期达到极好的状态,而最小生态径流量也能使大洋河生态环境状况得到改善和稳定,大洋河在丰水期生态径流破坏程度要高于枯水期,本文的研究成果对于大洋河河道生态保护和治理可提供参考价值。  相似文献   

4.
With river regulation, water withdrawal is common, reducing instream flows. The opposite alteration, flow augmentation, is less common and could reveal a mechanistic coordination between flow regime, channel form, and riparian ecosystems. The Little Bow River, a naturally intermittent prairie stream in Southern Alberta, has experienced flow augmentation since the late 1890s, and the Little Bow/Highwood Project of 2004 enabled a tripling of diversion flows from 2.9 to 8.5 m3/s. We investigated the subsequent responses by assessing the channel form and riparian vegetation based on aerial photographs taken in 2000 versus 2010, and riparian birds were assessed between 2005 and 2013 to investigate associations with riparian vegetation. Following recent flow augmentation, the mean channel width increased from 12.2 to 13.5 m, while sinuosity was relatively unchanged. Streamside zones with true willows (especially Salix exigua and Salix bebbiana) increased from 7 to 11% of the river corridor, and the facultative riparian wolf willow (Elaeagnus commutata) zones increased from 16 to 20%, while grassy zones decreased from 64 to 52%. Avian species richness and Shannon–Wiener index increased, while species evenness was relatively unaltered, suggesting an increase of rarer bird species in response to the increased habitat structure and diversity following the expansion of riparian shrubs and woodland. This study revealed responses to the recent flow augmentation over the first decade of implementation, and alterations following flow augmentation would likely continue for decades until the river and riparian zones adjust to the new flow regime. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
基于生态水力半径法的武江流域生态流量研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用综合反映水生生物需求和河道断面信息的生态水力半径法,对武江河上北江特有珍稀鱼类省级自然保护区内的生态流量和生态水位进行估算。结果表明:生态水力半径法计算的生态流量过程线上存在明显的低流量、高流量和流量脉冲等水文要素,符合鱼类的自然需求;天然径流量下生态水力半径法估算的生态需水均可得到满足,但武江上梯级开发较多,需进行生态水位开展闸坝联合调度来保障河道的生态需水,确保犁市(二)站断面处各月份水深不小于平均生态水深。  相似文献   

6.
以渭河为研究对象,依据渭河干流北道、林家村、魏家堡、咸阳、临潼、华县6个主要断面1971-2014年的水文实测资料,基于河流典型生态环境特征划分河流生态类型,并对其生态基流量进行优化计算,在此基础上揭示渭河生态基流时空分异特征及生态基流保障率。结果表明:选取北道、林家村、魏家堡、咸阳、临潼、华县断面枯水期的最小值作为相应断面的生态基流量推荐值,分别为5. 68、2. 51、11. 39、25. 33、77. 26和61. 86 m3/s;从时间变化看,各断面生态基流年内最大值均集中在汛期(7-9月),最小值集中在枯水期(12-次年3月)。除汛期外,各断面的生态基流月均值变化轨迹整体一致,各断面生态基流除8月与1、2、3、4、6、10、11、12月差异不显著(P>0. 05)外,其余各月两两之间差异均显著(P <0. 05);从空间分布来看,林家村断面1月生态基流量最小,华县断面8月生态基流量最大,体现出渭河上游生态基流量不足而下游河道泥沙淤积的生态环境特征;生态基流量总体上呈上游低下游高的特征,除魏家堡和华县断面月均生态基流量差异不显著(P> 0. 05)外,其余各断面之间差异均显著(P <0. 05)。  相似文献   

7.
为了确定水电开发活动对河流水资源的可开发利用率,建立分期展布的河道径流可变区间核算方法,其中河道径流包括河道最小生态需水和河道最大洪流,并以西藏拉萨河为例进行核算。结果表明:拉萨河河道最小生态需水和最大洪流年内动态变化分别为29.5~328.3 m3/s和95.1~1 673.4 m3/s。与河道最小生态需水约束相比,河道径流可变区间约束使得拉萨河年调节型水电开发的水资源可开发利用率从60.2%下降到18.7%。指出对于径流丰枯特征十分明显的季节性河流,大型水利工程在平衡径流季节分布的过程中,应该受河道径流可变区间约束,尤其是枯水期最大洪流约束下河道径流量的可增加空间。  相似文献   

8.
不同季节气象干旱向水文干旱的传播及其动态变化   总被引:5,自引:0,他引:5  
研究变化环境下气象干旱向水文干旱的传播与影响机制,有利于揭示水文干旱的形成过程与机理,从而建立基于气象干旱的水文干旱预警。为揭示不同季节气象干旱向水文干旱的传播动态变化及其驱动因素,本研究以无定河、窟野河和沁河流域为研究区域,采用标准化降水指数(SPI)和标准化径流指数(SRI)分别表征气象干旱和水文干旱,分析气象、水文干旱的时程变化特征,计算不同季节气象干旱向水文干旱的传播时间,探究影响不同季节干旱传播的主要因子及物理机制。结果表明:(1)气象、水文干旱有加重的趋势,水文干旱对气象干旱的响应具有滞后关系;(2)除窟野河流域变慢外,研究区域不同季节干旱传播整体呈变快的趋势,表明这些区域水循环速率加快;(3)无定河和沁河流域传播时间加快与降水和气温不断变快有关;窟野河流域传播时间的变慢与煤炭开采和水库建造有关。  相似文献   

9.
气候和土地利用同时作用于流域径流,影响着流域水资源的量和质。以浏阳河流域为例,基于SWAT模型和情景分析方法定量评估未来流域内土地利用和气候变化对径流的作用。首先采用元胞自动机-马尔科夫(CA-Markov)模型模拟浏阳河流域2020和2050年的土地利用空间格局,其次在World Clim数据库中获得未来流域内气候变化数据,最后采用SWAT模型定量评估未来不同情境下土地利用和气候变化对径流的影响。研究结果表明:未来浏阳河流域林地比例下降、城市建设用地和耕地比例增加;气候呈暖干趋势; 2020和2050年,土地利用变化时,浏阳河榔梨站模拟径流将分别减少2. 42和0. 96 m~3/s;气候变化时,榔梨站模拟径流将分别减少3. 02和1. 13 m~3;土地利用和气候变化综合影响下,榔梨站模拟径流将分别减少8. 54和4. 27 m~3/s;说明浏阳河流域径流的变化对气候响应更加敏感,土地利用和气候变化对径流的影响呈非线性协同作用。  相似文献   

10.
As “corridor” in the south–north and “barrier” in the west–east direction, Lancang River, the upstream of Lancang–Mekong River, has an obvious spatial–temporal characteristic and unique regional attributes. Recently, the hydropower development of the mainstream along Lancang River has disturbed the regional ecosystem to have unstable factors, and threatened the ecosystem health. This paper used the couple model of Grading Coefficient of ecological water requirement (GCEWR) and the ecological runoff (ER) to simulate the ecological water requirement (EWR) of Lancang River, in a broad sense, this method belongs to hydrology–ecology methodology. In the GCEWR–ER, We adopted ecological characteristic indexes (ECI) and hydrological characteristic variables (e.g. variance index) to calculate the GCEWR, and used three methods to calculate the basic variable (e.g. ER) of EWR: the first method directly used annual average runoff as ER; the second method was used frequency method and took year as basic time unit, and the third method took season (e.g. flood season, non-flood season) as the basic time unit to evaluate ER. Finally, in order to demonstrate applicability of this developed methodology, this paper adopted GCEWR–ER method to calculate the EWR of Lancang River in the Longitudinal Range-Gorge Region. By the systematic analysis of the results, we could get the minimum, satisfying and optimal EWR for the Lancang River, which were 142.53 × 108, 286.46 × 108 and 385.96 × 108 m3. The three EWR respectively occupied 25.10%, 50.46% and 67.98% of the average measured run-off (567.75 × 108 m3) of the Lancang River, and respectively occupied 18.63%, 37.45% and 50.45% of the natural run-off (765 × 108 m3) of the Lancang River.  相似文献   

11.
Following water withdrawal, riparian cottonwoods have declined downstream from some dams in western North America. Analyses of aerial photographs and field observations in the 1980s suggested that the black and narrowleaf cottonwoods (Populus trichocarpa and Populus angustifolia) along the Waterton River, Alberta, were declining due to drought stress following the 1964 damming and diversion. This raised concern for the riverine ecosystems and in 1991, “functional flows” commenced with 2 changes: (a) the minimum flow was increased from 0.9 to 2.3 m3/s (mean discharge 21.9 m3/s) and (b) flow ramping provided gradual stage recession after the spring peak. This provided an environmental flow regime that was delivered for 2 decades and this study investigated the consequent river flow patterns and riparian woodlands upstream and downstream from the Waterton Dam. Analyses of aerial photographs from 1951 to 2009 assessed 4 flow management intervals: (a) the free‐flowing predam condition, (b) the initial dammed interval to the mid‐1970s, (c) a drought interval in the 1980s, and (d) with the environmental flow regime after 1991. Analyses revealed woodland reduction from 1961 to 1985 due to losses through bank erosion with major floods and apparent decline due to low flows following a regional drought and water withdrawal for irrigation. With the subsequent environmental flow regime, there was apparent woodland recovery, despite drought in 2000 and 2001. This study demonstrated that the correspondence between river flow patterns and the extent of riparian woodlands and the benefit from the environmental flow regime that probably reduced drought stress and mortality.  相似文献   

12.
The quantity of water that should be retained in streams and rivers for the benefit of fish during periods of water scarcity is a question of considerable interest to river managers and biologists. Although instream flow methodologies have existed since the 1970s, no single method has been widely accepted for use on large warm‐water rivers because of their high species richness and generalized fish habitat use patterns. In this paper, we present an approach similar to instream flow incremental methodology, but which uses two‐dimensional flow models and biomass estimates derived from multiple sites on two Colorado rivers for predicting the effect of discharge on adult standing stocks of two native fish species. Suitability criteria are developed for bluehead and flannelmouth sucker (Catostomus discobolus and C. latipinnis) by comparing adult biomass in individual meso‐habitat units with modelled depths and velocities. We find that roundtail chub (Gila robusta) biomass is not correlated with depth and velocity, but appears to be positively associated with indices of habitat heterogeneity. Species biomass and total usable habitat area are predicted as a function of discharge for each site and data show good correlation between predicted and measured biomass. Results suggest that the Colorado and Yampa Rivers have similar potential for native fish biomass, but low summer discharges limit native fish biomass on the Yampa River. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The Range of Variability Approach (RVA) is used to investigate the hydrologic impacts of a diversion weir on Chou‐Shui Creek, Taiwan. Thirty‐two hydrologic parameters, called Indicators of Hydrologic Alteration (IHA), are used to evaluate the flow conditions before and after weir construction. One standard deviation from the mean for each of the pre‐construction hydrologic parameters is set as the management target range. Under the prevailing diversion rules, large hydrologic alterations are observed, especially for low flows. The means of 19 hydrologic parameters presently fall outside of the targets and the average non‐attainment rate for the 32 indicators is 73.2%. Increasing the instream flow release or reducing diversions could mitigate the hydrologic impacts of weir construction. Increasing the instream flow to 40 m3/s and reducing monthly water demands by variable percentages significantly improves the altered flow conditions. Under the proposed water release and diversion scheme, 29 hydrologic parameters will fall within the management targets and the average non‐attainment rate will be reduced to 35.6%, much closer to the pre‐construction value of 25.3%. Restoring the natural flow variability is expected to promote the natural stream biota. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Four methods were compared for determining recreational instream flow needs (R‐IFN) for paddling canoes, kayaks and rafts on ten river reaches in the Oldman River Basin of southern Alberta. Two flow criteria were evaluated: ‘minimal flow’—the low flow that still provides a reasonable quality river trip; and ‘sufficient flow’—the lower end of the favoured flow range. A voluntary, mail‐in user survey from 1983 to 1997 produced 394 responses (4251 paddler days) relative to flow suitability. An expert judgment approach considered flow recommendations from three regional paddling guides that were considered comprehensive and credible. A flow comparison involved about 20 paddle trips per reach by the authors with differing groups, boats and flows. These subjective approaches produced quite consistent results (r2 = 0.63) and these were compared to results from an objective, hydraulic modelling method, the ‘depth, discharge method’ (DDM), that applied stage–discharge functions to determine flows that would satisfy depth criteria of 60 and 75 cm. The DDM minimal flows were closely correlated with the means of the subjective methods (r2 = 0.73). Thus, all four approaches produced generally consistent results, indicating that all methods were valid. Typical minimal and sufficient flows were about 15 and 30 m3 s?1, respectively, for the medium‐sized river reaches that had average annual discharges (mean Q) of about 20 m3 s?1. A close correlation (r2 = 0.90) between the minimal flow and mean Q suggests that mean Q can provide an initial estimate for R‐IFN for rivers of this type and size. We recommend that R‐IFN studies commence with the DDM since it is quick, inexpensive and objectively defensible. This would provide guidelines for subsequent subjective assessments that should involve more than one approach to increase the breadth of subjective consideration. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The transboundary St Mary River drains Glacier National Park, USA, and was progressively dammed and diverted over the 20th century to support agricultural irrigation in northern Montana and southern Alberta, Canada. Following reduced instream flows, the riparian cottonwoods collapsed, and by 2000, few parental trees remained to provide seeds for cottonwood replenishment. As a novel twofold restoration strategy we: (1) worked with the dam operators to deliver a functional flow regime, a regulated instream flow pattern intended to recover some ecological function and specifically seedling recruitment, and (2) delivered cottonwood seeds by direct spreading and by sticking cuttings with seed catkins to allow gradual seed dispersal. The combination of river regulation and seeding enabled cottonwood colonization, and around 1.5% of the applied seeds produced seedlings after the first summer, at sites without livestock or heavy recreational use. Around 15% of those seedlings survived through the fourth summer, with mortality due to drought stress and flood scour, and establishment and survival were higher for the prairie cottonwood, Populus deltoides, than the narrowleaf cottonwood, Populus angustifolia. This study confirmed that the lack of seed source trees limited cottonwood colonization and demonstrated that the twofold restoration strategy provides promise for severe situations where parental trees have been lost. However, this would require substantial effort, and it would be more efficient to provide survivable instream flow patterns that avoid cottonwood collapse. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
利用多源、多时相的数字遥感影像和呼伦湖周边地区水文气象资料,采用基于卷积神经网络的高分辨率图像重构方法研究了1999—2019年呼伦湖面积、库容变化情况。结果表明:2003—2012年呼伦湖的面积逐年减小,湖泊水量逐年下降,2003—2012年补给呼伦湖的乌尔逊河与克鲁伦河的多年平均径流量分别为1.30亿m3与1.41亿m3,分别只有1991年以前多年平均径流量的21%与24%;而2003—2012年呼伦湖平均水面年蒸发量为17.5亿m3,平均年湖面降水量为3.25亿m3;地下水补给呼伦湖的年平均水量为5.3亿m3,主要来自新生代玄武岩地下水,哈拉哈河源头火山玄武岩地下水通过熔岩管道集中外泄,据此推断补给呼伦湖的地下水来自跨流域的外源水。  相似文献   

17.
‘Downstream’ hydraulic geometry relationships describe the variation of water depth, velocity, and water surface width between rivers of different size at a characteristic discharge, whereas ‘at-a-station’ geometry describes the variation of hydraulic geometry with discharge within a reach. The instream flow incremental methodology (IFIM) also predicts the variation in water depth and velocity with discharge at a reach scale, so that hydraulic geometry relationships can potentially be used as a preliminary method of habitat assessment. Hydraulic geometry relationships were calculated from instream habitat surveys of 73 New Zealand river reaches with mean flows varying from 0.6 to 204 m3 s−1 and an average gradient of 0.0047. The exponents of both at-a-station and downstream hydraulic geometry relationships were within the range of values reported in other international studies, although the exponents indicated that New Zealand rivers tended to experience greater changes in velocity and less in depth than the international average, probably because of high average gradient. The frequency distributions of water depth and velocity were positively skewed in most rivers, and on average the modal velocity was 90% of the mean velocity and the modal depth was 80% of mean depth. The use of at-a-station hydraulic geometry relationships for instream habitat assessment was compared to depth and velocity predictions using habitat simulation techniques (IFIM) in two streams. Measurements of stream width and depth at five cross-sections at two calibration discharges were used to establish at-a-station hydraulic geometry relationships. These predicted mean depth and velocity within 8% of the reach average values of the IFIM surveys within the range of calibration discharges and within 10–15% of the IFIM reach average when extrapolated beyond the calibration discharges. Hydraulic geometry can be used to indicate whether hydraulic conditions approach a ‘threshold’ such as a minimum acceptable depth or velocity, thus predicating the need for more extensive habitat survey and analysis. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
本研究采用野外生物监测、栖息地同步观测和实验室控制实验等技术手段,应用生物学、鱼类生态学、生态水力学、水文学等多学科理论,基于河流栖息地模拟法,研究了黄河下游指示物种黄河鲤生态学特性及其栖息生境与流速、水深、水温等水文水环境因子之间的关系,将径流条件与目标物种不同生长阶段生物学信息相结合,建立了代表物种繁殖期、越冬期栖息地适宜度指数,构建了黄河下游重点河段河流栖息地模型,建立了指示物种栖息地状况与河川径流条件定量响应关系,提出黄河下游花园口和利津断面繁殖期最小生态流量为300 m3/s和100 m3/s、适宜生态流量为600~700 m3/s和190~250 m3/s。该研究在水生生物习性及其与河川径流响应关系方面实现突破,解决了黄河生态需水研究中关键技术问题。  相似文献   

19.
以长江荆南三口河系1956-2016年的实测径流量资料为基础,以1989年为水系连通变异分界点,运用趋势分析法和小波分析法研究基准期和变化期的径流量时空变化特征。结果表明:基准期和变化期年均径流量呈现下降趋势,下降速率分别为1.945 7×108和0.768 2×108 m3/a;径流主要集中在丰水季节,占比达60%~70%,变化期在4个水文季节的径流量比基准期下降了40%~80%,枯水季节下降幅度高达77%;径流量存在3类周期变化,变化期比基准期的小周期丰枯交替次数约增多2次,长周期范围和中心值约缩短6 a;新江口和管家铺两个水文站的径流量约为三口地区总流量的2/3,集中于松滋河的西支和藕池河的东支。研究结果可为荆南三口地区及洞庭湖的水资源调蓄提供科学技术参考。  相似文献   

20.
为模拟和田河流域上游冰川径流,构建了嵌入冰川模块的SWAT模型,并基于实测径流数据及冰川编目数据对模型进行校正与验证,定量分析了和田河流域上游冰川径流的变化趋势及其对出山径流的贡献和对气候变化的响应规律。结果表明:1967—2017年玉龙喀什河流域多年平均冰川径流量为11.02亿m3,冰川径流对出山径流的贡献率为48.7%,喀拉喀什河流域多年平均冰川径流量为9.51亿m3,冰川径流贡献率为45.5%;在0.01显著性水平下,玉龙喀什河流域气温与降水量均呈显著上升趋势,喀拉喀什河流域气温呈显著上升趋势,降水量呈不显著上升趋势;气候变化背景下,两条支流由于地理位置、冰川特征等的不同,导致两条支流的径流响应呈现较大差异,玉龙喀什河流域冰川径流量呈显著增加趋势,而冰川径流对出山径流的贡献率呈显著下降趋势,喀拉喀什河流域冰川径流量与冰川径流贡献率均呈不显著增加趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号