首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多孔板是流化床布气元件的关键部件。工作中受流动气体和物料的作用,在多孔板上产生一定的压力、拉力和剪切力,因此要求多孔板具有优良的力学性能。采用粉末冶金法制备蒙乃尔多孔板,测定其不同部位的压缩和剪切性能。结果表明:多孔板边部压缩屈服强度可达143 MPa,弹性模量可达18.1 GPa;中心部位压缩屈服强度可达67 MPa,弹性模量可达8.2 GPa;弹性应变区间可达到3.0%;边部剪切强度可达153 MPa,中心为87 MPa。  相似文献   

2.
考察在过冷液相区内790K+30min保温后炉冷和液氮冷却对Cu50Zr42Al8压缩断裂行为的影响。5mm铸态非晶复合棒的屈服强度、断裂强度和杨氏模量分别为1670MPa,1849MPa和104.4GPa,塑性应变为1.9%。经炉冷和液氮冷却试样的压缩断裂强度和杨氏模量下降,分别为912,678MPa和38,56.5GPa。液氮冷却试样为部分非晶结构,炉冷试样完全晶化。晶化相均为正交晶相Cu10Zr7,四角晶相CuZr2和DO3结构的AlCu2Zr三种脆化相。  相似文献   

3.
This research studies the feasibility and effectiveness of a new method of strengthening existing RC T-beams in shear by using mechanically anchored unbonded dry carbon fiber (CF) sheets. This method eliminates the debonding of epoxy-bonded carbon-fiber-reinforced polymer (CFRP) sheets and utilizes the full capacity of dry CF sheets. In this method, dry CF sheets are wrapped around and bonded to two steel rods. Then the rods are anchored to the corners of the web-flange intersection of the T-beam with mechanical bolts. This makes a U-shaped dry CF jacket around the web which increases the shear strength of the T-beam using the privilege of higher tensile strength and modulus of elasticity of dry CF compared to composite CFRP. A total of three RC T-beams with shear span-to-depth ratio of 2.0 were tested under increasing monotonic load till failure. The pilot tests were done as a proof-of-concept of the effectiveness of the proposed method in increasing the shear capacity of the RC T-beams. The first T-beam, which was tested as the control beam, failed in shear. The second beam was strengthened by using a U-shaped CFRP sheet that was externally bonded to the web of the beam in the shear zones. The third beam was strengthened by using anchored U-shaped dry CF sheet. The test results showed that the beam strengthened by the new mechanically anchored dry CF had about 48% increase in shear capacity as compared to the control beam and 16% increase in shear capacity as compared to the beam strengthened by CFRP epoxy-bonding method.  相似文献   

4.
为满足牙种植体对高强度、低模量钛合金的需要,设计开发了一种具有较低弹性模量和较高强度的新型医用TB12亚稳β钛合金。研究了固溶处理和时效处理对制备的8 mm TB12钛合金热轧棒材力学性能的影响。研究结果表明:TB12钛合金经过780~850℃×0.5 h的热处理即可实现完全固溶处理。在固溶状态TB12钛合金具有近60GPa的较低弹性模量、1 000 MPa的较高抗拉强度、优良的抗剪强度和良好的塑性,满足生物医用钛合金所需要的高强度和低模量的匹配。在固溶时效状态,TB12钛合金具有高达1 300 MPa的高强度和大于5%的延伸率。  相似文献   

5.
The aim of this study was to compare the mechanical properties of a prefabricated root canal post made of carbon fiber reinforced composites (CFRC) with metal posts and to assess the cytotoxic effects elicited. Flexural modulus and ultimate flexural strength was determined by 3 point loading after CRFC posts had been stored either dry or in water. The bending test was carried out with and without preceding thermocycling of the CFRC posts. The cytotoxicity was evaluated by an agar overlay method after dry and wet storage. The values of flexural modulus and ultimate flexural strength were for dry stored CFRC post 82 +/- 6 GPa and 1154 +/- 65 MPa respectively. The flexural values decreased significantly after water storage and after thermocycling. No cytotoxic effects were observed adjacent to any CFRC post. Although fiber reinforced composites may have the potential to replace metals in many clinical situations, additional research is needed to ensure a satisfying life-span.  相似文献   

6.
The shear bond strengths of the XR-Bonding System used in conjunction with Herculite composite, to the dentine of forty extracted human permanent first and second molars were determined after the test specimens were stored in physiological saline at 37 degrees C for 48 hours, one week, two weeks and four weeks, respectively. A shear load was applied to the base of the bonded composite cylinders with a knife-edged rod at a crosshead speed of 0.5 mm/minute. The shear bond strengths were expressed in megapascals (MPa). The quantitative microleakage of Class V preparations in dentine (cementum) in forty-eight extracted human maxillary permanent canines restored with the same dentinal bonding system and after storage in physiological saline at 37 degrees C for the same time intervals as for the shear bond strength tests, was determined. On the final day of each time interval the teeth were thermocycled X 500 in a 2 per cent methylene blue solution between 8 degrees C and 50 degrees C with a dwell time of 15 seconds. Microleakage was determined by a spectrophotometric dye-recovery method and expressed in microgram dye/restoration. There was a significant trend for the shear bond strengths to increase with duration of storage (p = 0.01) but the quantitative microleakage was not significantly different (p = 0.75).  相似文献   

7.
An animal model (the ewe) was used to study mechanical parameters of cancellous bone specimens. Compression and shear tests were conducted on ewe vertebral trabecular bone (L1-L5) from old ewes (mean age: 9 years) under two different conditions: first, at room temperature in air ("standard" test conditions); and secondly, in a physiological saline bath regulated at 37 degrees C. The parameters obtained under "standard" test conditions with a uniaxial compression test were the mean value of the maximum strength (sigma max = 22.3 (7.06) MPa), Young's modulus (E = 1510 (784) MPa), the strain at maximum strength (epsilon sigma max = 3.21 (0.8) percent) and the energy absorbed during the test (W = 0.3 (0.12) MJ.m-3). No significant change was found when the test was carried out in a saline bath at 37 degrees C (p < 0.0005). An original shear test was performed to evaluate the shear strength which was found to vary from 7.5 (4.7) to 14.6 (8.53) MPa under "standard" test conditions depending on the method of calculation. Testing of the specimens in a 37 degrees C physiological saline bath induced a decrease in the shear strength from 32.5 percent (p < 0.0005) to 37.3 percent (p < 0.0001) of those measured under "standard" test conditions. The non-destructive measurement of the Bone Mineral Density (BMD) accounted for up to 73.3 percent of the maximum compressive strength sigma max and 61.5 percent of the maximum shear strength tau max determined in saline solution at 37 degrees C. These results showed that other parameters influencing the mechanical properties of trabecular bone and its structure appeared to be essential.  相似文献   

8.
PURPOSE: Abdominal aortic aneurysms (AAAs) rupture when the wall stress exceeds the strength of the vascular tissue. Intraluminal thrombus may absorb tension and reduce AAA wall stress. This study was performed to test the hypothesis that intraluminal thrombus can significantly reduce AAA wall stress. METHODS: AAA wall stresses were determined by axisymmetric finite element analysis. Model AAAs had external diameters ranging from 2.0 to 4.0 cm. Model parameters included: AAA length, 6 cm; wall thickness, 1.5 mm; Poisson's ratio, 0.49; Young's modulus, 1.0 MPa; and luminal pressure, 1.6 x 10(5) dyne/cm2. Stresses were calculated for each model without thrombus, and then were recalculated with thrombus filling 10% of the AAA cavity. Calculations were repeated as thrombus size was increased in 10% increments and as thrombus elastic modulus increased from 0.01 MPa to 1.0 MPa. Maximum wall stresses were compared between models that had intraluminal thrombus and the unmodified models. Stress reduction greater than 25% was considered significant. RESULTS: The maximum stress reduction of 51% occurred when thrombus with elastic modulus of 1.0 MPa filled the entire AAA cavity. Stresses were reduced by only 25% as modulus decreased to 0.2 MPa. Similarly, decreasing thrombus size by 70% resulted in stress reduction of only 28%. Large AAAs experienced greater stress reduction than small AAAs (48% vs 11%). CONCLUSION: Intraluminal thrombus can significantly reduce AAA wall stress.  相似文献   

9.
Human femora were used to compare the changes in bone surface strain resulting from decreasing the material modulus of a collarless hip stem to determine whether a highly elastic stem increased bone loading. Three substrate materials were tested: titanium (modulus of elasticity 110 GPa), carbon fiber composite (modulus of elasticity 52 GPa), and polymethylmethacrylate (PMMA, modulus of elasticity of 1.9 GPa). Two separate analyses were performed in which femora were implanted randomly with one of the three stem types. Results showed that assembly strains did not differ significantly among different materials. There was a large strain reduction in the proximal region of the femora for all stem substrates relative to the intact femur. Although there was statistically greater surface shear strain as the material modulus decreased, the PMMA stem did not substantially increase bone loading.  相似文献   

10.
12%SiCp/Al复合材料制备工艺及力学性能研究   总被引:1,自引:0,他引:1  
对碳化硅颗粒进行表面氧化酸洗处理,采用粉末冶金加热挤压工艺制备了12%SiCp/Al(体积分数)复合材料。利用金相显微镜和电镜对微观组织进行了观测,拉伸试验测试复合材料的力学性能。试验结果表明:SiC颗粒在铝基体中分布比较均匀;T6热处理条件下12%SiCp/Al复合材料的屈服强度和抗拉强度分别约为472.4MPa、525.7MPa,伸长率为6.5%,弹性模量为92.7GPa。  相似文献   

11.
采用水平连铸直接复合成形工艺制备了断面尺寸为50 mm×30 mm×3 mm×R4 mm的铜包铝复合棒材,通过多道次平辊轧制和精整拉拔,制备了断面尺寸为60 mm×8 mm的铜包铝复合扁排,研究了合理的轧制工艺、扁排的力学和导电性能.结果表明:扁排的最终轧后宽度与侧边部开裂具有相关性,可通过轧制过程的压下量分配和轧制温度控制扁排宽度,从而防止边部开裂.合理的轧制温度为室温至200℃.在室温平辊轧制时,较为合理的轧制制度为5道次平辊轧制,第1道次压下率为20%左右,最大道次压下率为30%左右.轧后经1道次精整拉拔,可获得外形尺寸精确、表面质量良好的铜包铝复合扁排.经退火处理后,铜包铝复合扁排电阻率为2.084×10-8Ω·m,抗拉强度为122.7 MPa,延伸率为22.0%,界面剪切强度为25.9 MPa.   相似文献   

12.
The addition of vertically oriented shear spikes (fiberglass reinforced polymer rods) was shown to increase the effective stiffness of the stringers of a full-scale timber bridge chord specimen. Results found from the flexural load testing of a full-scale timber bridge chord laboratory specimen are presented. Reinforcement was provided with 19?mm diameter shear spikes bonded to the wood by an epoxy resin. The bridge chord specimen was intentionally damaged to simulate degradation. Shear spikes were then installed from the top of the member into predrilled holes to provide horizontal shear resistance and to improve the flexural effective stiffness. Results from the testing showed that with the insertion of five sets of shear spikes the average flexural effective stiffness recovered in the four stringers of the chord was 91.6%.  相似文献   

13.
以HfN为增强剂、Ni为金属添加剂, 通过真空热压烧结工艺制备了ZrB2-HfN陶瓷材料, 研究了HfN含量(质量分数)对ZrB2基陶瓷材料微观组织和力学性能的影响。结果表明: 随着HfN质量分数从5%增加到15%, ZrB2-HfN陶瓷材料的硬度和抗弯强度先增大后减小, 而断裂韧度逐渐增大; 当HfN质量分数为15%时, ZrB2-HfN陶瓷材料的断裂模式为穿晶断裂与沿晶断裂共存; 当HfN含量为10%时, ZrB2-HfN陶瓷材料具有较好的综合力学性能, 其硬度、抗弯强度和断裂韧度分别为: (16.47±0.24) GPa、(734.48±25) MPa和(5.37±0.20) MPa·m 1/2。  相似文献   

14.
The use of near surface mounted (NSM) fiber-reinforced polymer (FRP) rods is a promising technology for increasing flexural and shear strength of deficient reinforced concrete (RC) members. As this technology emerges, the structural behavior of RC elements strengthened with NSM FRP rods needs to be fully characterized. Given the variability of material properties and groove geometry, this requires that the tensile properties of the FRP rod and the mechanics of load transfer between NSM FRP rods and concrete be investigated. Tensile and bond tests on commercially available carbon FRP deformed rods for application as NSM reinforcement were carried out using test methods that are expected to become standards in North America. Three full-size beams, one control beam and two beams strengthened in shear with NSM FRP rods, were tested. Test results are presented and compared with the predictions of a simple design approach, showing reasonable agreement.  相似文献   

15.
Nickel/graphite cells consisting of graphite cores and nickel cell walls were formed into form lightweight cell composite samples by hot-pressing in reducing atmosphere. In the composite samples, the cells walls were diffusion-bonded to form a continuous metal-matrix. The composite density ranged from 2 to 4 g/cm3. Mechanical properties of the composite were measured in bending, compression and by ultrasound wave propagation, and were correlated with the properties of the constituent elements. Tensile strength derived from bending tests, compression strength, ductility in tension and compression, Young’s modulus, velocity of sound, and damping coefficient were measured on samples with a density of 3.35 g/cm3. Young’s modulus values ranged from 4 to 35 GPa depending on the measurement methods. The flow stress in compression ranged from 35 to 120 MPa. Plastic deformations of over 15 pct were obtained in compression testing before shear failure occurred. The composite has high damping capacity. Attenuation measurements of transmitted ultrasound pulses yielded a value for the attenuation constant of 0.34 mm−1, more than five times than that of gray iron.  相似文献   

16.
This paper presents the results of an experimental investigation undertaken to evaluate the punching shear capacity of interior slab–column connections, strengthened using flexible carbon fiber-reinforced polymer (CFRP) sheets. Sixteen square (670×670?mm) slab–column connections with different slab thicknesses (55 and 75 mm) and reinforcement ratios (1 and 1.5%) were tested. Twelve specimens were strengthened using CFRP sheets and the remaining four specimens were kept as controls. Without strengthening, all specimens were designed to experience punching shear failure. The CFRP sheets were bonded to the tension face of the specimens in two perpendicular directions parallel to the internal ordinary steel reinforcement. The test results clearly demonstrate that using CFRP leads to significant improvements in the flexural stiffness, flexural strength, and shear capacity of beam–column connections. Depending on the content of the ordinary reinforcement, thickness of the slab, and area of CFRP sheet, the flexural strength increased between 26 and 73% and the shear capacity increased between 17 and 45%. The measured stress in the CFRP sheets at nominal strength varied between 22 and 69% of the ultimate tensile strength of the fibers. Comparison with available prediction equations showed that the punching shear capacity can be predicted with reasonable accuracy if the contribution of CFRP reinforcement to the increase in flexural strength is accounted for. On the other hand, the code design expressions were conservative in predicting the capacity observed in the tests.  相似文献   

17.
Field observations indicate that failure in soft rock is often associated with a slip surface or shear band, where deformation is concentrated in a narrow zone; displacements occur with decreasing stress within the shear band, whereas outside the band the material appears to be intact. In examining the propagation of the shear band, it is useful to establish the relation between shear stress and slip displacement. This was accomplished within a laboratory setting with a plane-strain compression apparatus, developed to study localized failure under controlled conditions. Tests on a soft rock, a sandstone with a uniaxial compressive strength of 10 MPa and a modulus of 2 GPa, were conducted to estimate fracture energy GIIC, a quantity used to evaluate energy dissipation of the failure process. GIIC was found to decrease by a factor of 3 when considering the actual displacements, rather than assuming tangential displacement only, that is, no displacement normal to the shear band. The experiments showed that the shear band was not completely formed until after peak strength and that sliding along the band during softening was associated with compaction; residual behavior exhibited virtually no volume change. The shear strength at peak stress was nonlinearly related to the normal stress, but the shear strength at the residual state displayed a linear relationship. For normal stresses less than the uniaxial strength, those typical of civil engineering practice, the response can be described as cohesion softening, with friction remaining constant in going from the peak to the residual stress states.  相似文献   

18.
Bulk samples of Ti4AIN3 were fabricated by reactive hot isostatic pressing (hipping) of TiH2, AlN, and TiN powders at 1275 °C for 24 hours under 70 MPa. Further annealing at 1325 °C for 168 hours under Ar resulted in dense, predominantly single-phase samples, with <1 vol pct of TiN as a secondary phase. This ternary nitride, with a grain size of ≈20 μm on average, is relatively soft (Vickers hardness 2.5 GPa), lightweight (4.6 g/cm3), and machinable. Its Young’s and shear moduli are 310 and 127 GPa, respectively. The compressive and flexural strengths at room temperature are 475 and 350 MPa, respectively. At 1000 °C, the deformation is plastic, with a maximum compressive stress of ≈450 MPa. Ti4AlN3 thermal shocks gradually, whereby the largest strength loss (50 pct) is seen at a ΔT of 1000 °C. Further increases in quench temperature, however, increase the retained strength before it ultimately decreases once again. This material is also damage tolerant; a 100 N-load diamond indentation, which produced an ≈0.4 mm defect, reduces the flexural strength by only ≈12 pct. The thermal-expansion coefficient in the 25 °C to 1100 °C temperature range is 9.7±0.2 × 10−6 °C−1. The room-temperature electrical conductivity is 0.5 × 106 (Θ · m)−1. The resistivity increases linearly with increasing temperature. Ti4AlN3 is stable up to 1500 °C in Ar, but decomposes in air to form TiN at ≈1400 °C. graduated from the Department in June of 1999 with an MS thesis.  相似文献   

19.
以亚微米级WC粉、Al2O3粉、Cr粉、Mo粉与Ni粉为原料,采用高能球磨+热压工艺制备WC/Al2O3-Cr-Mo-Ni金属陶瓷材料,利用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)分析材料的物相组成和显微组织结构以及断裂方式,研究粘结相Ni和陶瓷相Al2O3的含量(均为质量分数)对该材料力学性能和微观结构的影响。研究表明:金属陶瓷的抗弯强度及断裂韧性随Ni含量增加而提高,随Al2O3含量增加而降低,硬度的变化趋势则相反。当Ni含量为7%、Al2O3含量为10%时,该金属陶瓷具有良好的综合性能,抗弯强度为567 MPa,断裂韧性为7.46(MPa.m1/2),维氏硬度为15.24 GPa,基本达到现用模具材料的水平。随着Ni含量增加,金属陶瓷的断裂方式由沿晶断裂向沿晶断裂与穿晶断裂相混合的方式转变。  相似文献   

20.
采用热压烧结技术制备了TiCN-HfN-WC金属陶瓷刀具材料, 研究了WC含量(质量分数)对金属陶瓷刀具材料微观组织和力学性能的影响。结果表明: TiCN-HfN-32%WC金属陶瓷刀具材料由TiCN、(Ti, Hf, W)(C, N)、WC和MoNi组成, 材料中还含有极少量的(Ti, Mo, W)(C, N)固溶体, 材料内部形成了网状骨架结构。随着添加WC质量分数的增加, 材料中晶粒粒度降低, 添加WC可抑制材料中TiCN晶粒的生长, 起到细化TiCN晶粒的作用; 材料的相对密度、硬度和断裂韧度都具有先增大后减小的变化趋势, 材料的抗弯强度逐渐增大。当WC质量分数为32%时, 材料具有相对较好的综合力学性能, 其硬度为20.2GPa, 断裂韧度为7.1MPa·m1/2, 抗弯强度为1581.3MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号