首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
页岩的储集空间不但影响页岩气的储量,还影响页岩气井的产能。研究页岩气的赋存空间及赋存过程有助于确定勘探靶位。综合利用野外露头、岩心观察、薄片分析及扫描电镜等多种手段,研究了鄂尔多斯盆地陕北斜坡构造带延长探区延长组长7段页岩的储集空间类型及其特征。在此基础上,通过解吸模拟实验进行页岩气气体特征分析,最终重建页岩气的赋存过程。结果表明,延长探区长7段页岩发育原生粒间孔、次生溶蚀孔、有机质生烃孔、构造张裂缝及层间页理缝等多种孔、缝类型。在解吸过程中,分子直径较小的甲烷气最容易解吸,含13C的甲烷分子则相对解吸困难。在生气初期,长7段页岩生成的少量重烃气主要吸附于有机质表面及微孔中;在生气期,页岩优先吸附重烃气和具13C的甲烷气;当满足页岩的吸附和溶解等残留需要后,气体以游离态赋存。  相似文献   

2.
页岩含气量对页岩气田储量计算至关重要,直接关系到页岩气的产量、递减规律等。页岩气以游离气和吸附气形式赋存,有重量法等温吸附、容量法等温吸附、现场含气量测试等不同方法测试吸附气、游离气。通过测试页岩气降压解吸过程中气体体积变化来测量吸附气量,首次建立了同时测试页岩吸附气、游离气的方法。该方法采用柱状页岩岩心,模拟不同温度、压力、含水、真实孔隙结构等条件,消除了等温吸附曲线的负吸附异常;分析了有机质含量、压力、温度、含水、气体组成等因素对页岩吸附量的影响。实验结果表明,页岩的甲烷吸附量随压力增加而增加,压力大于12MPa后达到吸附/解吸动态平衡,吸附量不再增加;有机质含量TOC增加时吸附量增加;温度增加时吸附量降低;页岩含水后吸附量降低;甲烷吸附量高于氮气吸附量;焦石坝龙马溪组主力层页岩在温度20℃、压力30MPa下页岩气吸附气量介于1.8~3.1m~3/t之间,总含气量介于5.1~6.5m~3/t之间,吸附气占总气量40%左右。  相似文献   

3.
页岩纳米孔隙中超临界甲烷的吸附相密度特征是明确页岩真实含气量的基础。基于伊利石纳米孔隙中甲烷吸附相的分子模拟数据,在温度333.15~423.15 K和压力0~90 MPa区间内,分别利用Langmuir三元模型法、过剩吸附曲线截距法、密度剖面积分法计算了甲烷吸附相的密度和绝对吸附量,分析温度、压力和孔径对甲烷吸附相的影响规律,系统检验甲烷吸附相密度计算方法的合理性。研究表明:1)温度的升高减弱了甲烷受到的孔壁吸引作用,降低了甲烷吸附相的密度和绝对吸附量;2)甲烷吸附相的密度和绝对吸附量随压力增大而增加,深层页岩中地层高压对甲烷吸附相的密度和绝对吸附量仍有重要影响;3)受甲烷吸附相扩展和孔壁耦合吸引作用影响,甲烷在2 nm和4 nm孔隙中的吸附相密度和绝对吸附量更大;4)基于分子模拟的积分法适用于深层页岩纳米孔隙中甲烷吸附相密度的确定和绝对吸附量的校正。研究结果对页岩气储量准确评价具有重要意义。  相似文献   

4.
页岩气资源落实是中国未来天然气产量增长的最现实领域,页岩气资源/储量作为页岩气开发的基础,是页岩气开发方案编制、规划战略制定等的重要依据之一。现行页岩气资源/储量计算方法中普遍采用体积法计算吸附气储量和容积法计算游离气储量,但2种方法都没有考虑到吸附气和游离气共同储集在页岩微观孔隙中的情景,因此在游离气计算过程中应该扣除吸附气所占的孔隙体积。在页岩储层孔隙结构与页岩气赋存状态分析的基础上,建立了新的页岩孔隙与页岩气赋存状态模型和页岩气储层岩石物理模型,并进一步据此建立了符合页岩气储集特征的资源/储量计算的新方法。以四川盆地南部泸州海相和鄂尔多斯盆地东缘海陆过渡相页岩气评价井为例,对比了新方法与现行常规方法计算结果的差异性,现行方法高估了页岩气地质储量20%以上。与海相页岩相比,海陆过渡相页岩总孔隙度偏低,扣除吸附气所占孔隙空间,游离气含量占比仅为12%,游离气含量偏低成为单井产量偏低的原因之一。  相似文献   

5.
陕北斜坡构造带发育陆相页岩,部分页岩气开发井已经投产,但针对页岩气排烃方式、赋存过程的研究仍较薄弱,对页岩气储量的估算还存在不确定性。这些问题的解决有助于认识资源潜力、降低勘探风险。基于页岩气解析实验可以获得气体化学组成和碳同位素组成数据,其不仅为页岩气的成因研究及形成过程研究提供基础信息,还能解决上述地质机理及储量计算的问题。研究表明,研究区页岩气属于典型的油型气;页岩的吸附作用具有选择性,页岩优先吸附重烃气体和具13 C的甲烷分子;页岩气的初次运移遵循小分子组分优先运移的规律;研究区页岩气的地质赋存过程为先吸附再溶解后游离。  相似文献   

6.
通过高压压汞实验、低温氮气吸附实验、氩离子抛光—扫描电子显微镜观测对重庆綦江地区龙马溪组页岩样品进行了储层表征,并结合分子势能理论揭示了龙马溪组孔隙与页岩气赋存的关系。研究表明:1龙马溪组页岩储层中以小于100nm的孔隙最为发育,比表面积主要由半径小于8nm的孔隙提供,且纳米级孔隙以有机质孔为主,孔表面普遍存在不光滑性,具有分形特征,大孔孔壁叠合成诸多小孔。2有机质孔中甲烷分子与孔壁距离小于2nm时,二者间具有较强相互作用力;大于2nm时,二者间相互作用力可以忽略,甲烷分子呈游离状态。3龙马溪组储层孔隙中吸附气体积随孔径的增大而减少,当半径大于30nm时,吸附气体积可以忽略;游离气体积呈先增大后减小的趋势,在半径45nm附近达到顶峰。在10nm附近游离区域体积开始大于吸附区域体积;1~75nm孔隙中吸附区域占此孔径范围内孔隙总孔容的66%~71%。  相似文献   

7.
以川东南地区下志留统龙马溪组页岩为研究对象,借助重量法水蒸气吸附仪、重量法甲烷等温吸附仪以及页岩组成和孔隙结构等分析手段,开展束缚水、吸附气赋存定量研究,并探讨了微纳米孔隙中气—水赋存特征及主要影响因素。研究表明,不同类型页岩束缚水赋存能力差异较明显,可以利用水蒸气吸附—脱附和GAB模型比较准确地定量描述束缚水特征。页岩最大单层水分子吸附量与黏土矿物含量呈显著的正相关,表明黏土矿物为水分子提供了主要的活性吸附位。页岩对水分子的吸附能力要整体高于甲烷分子,而甲烷分子则主要以单层吸附形式在孔隙中赋存。不同页岩中束缚水、吸附气和游离气赋存的孔隙空间存在差异。2 nm以下孔隙均被吸附气和孔隙水所占据;有机碳(TOC)含量小于2.5%的页岩中游离气主体赋存空间约为5 nm以上孔隙,而TOC含量大于2.5%的页岩中游离气赋存空间主体约为3 nm以上孔隙;有机碳含量越高,游离气赋存的空间占比越高。   相似文献   

8.
页岩气藏是一种主要以游离态、吸附态和溶解态赋存于泥、页岩中自生自储的非常规气藏。由于页岩气存在吸附解吸等特性,常规气藏储量计算方法没有合理考虑吸附气和游离气相所占体积而导致计算的页岩气藏储量偏高。从页岩气藏储层特征及气体赋存形式的研究出发,研究多组分气体吸附情况下的页岩气藏地质储量计算方法。通过实例分析表明该方法更加符合页岩气藏实际,为合理评价页岩气藏的储量和开发方案提供了科学依据。  相似文献   

9.
为了深入分析海、陆相页岩微观孔隙的特征差异和含气潜力,采用FEI Quanta 200F场发射环境扫描电镜对页岩岩样进行了高真空扫描,建立了微观储层孔隙结构体系。以扫描电镜观测的微观孔隙孔径大小、形态及连通性结果为基础,参考前人对页岩吸附气、游离气研究成果及吸附气、游离气特征差异,对不同孔隙的储气能力和对页岩气的渗滤扩散的控制作用进行了研究,将陆相页岩和海相页岩的微观孔隙进行对比分析,总结海、陆相页岩微观孔隙的特征差异和含气潜力。研究结果表明,页岩气6类储层孔隙中,有机质纳米孔、黏土矿物粒间孔富集海、陆相页岩吸附气,古生物化石孔、岩石骨架矿物孔、黄铁矿晶间溶蚀孔、微裂缝富集游离气,改造后的岩石骨架矿物孔和微裂缝在页岩气的渗滤扩散方面起到主要作用。海相页岩中有机质和有机质纳米孔的含量远高于陆相页岩,而纳米孔富集吸附气;海相包含较多石英、长石及碳酸盐岩矿物,使海相页岩脆性矿物的含量高于陆相页岩,更易压裂,以上两个因素导致海相页岩的开发潜力大于陆相。  相似文献   

10.
深层页岩气是四川盆地龙马溪组页岩气增储上产的重要攻关方向,但与中浅层页岩气在储层特征和渗流特征方面存在差异,一定程度上限制了深层页岩气的勘探开发进展。为了明确深层页岩气的储层孔隙结构特征及页岩游离气传输特征,以川南深层龙马溪组优质页岩为例,开展了页岩储层孔隙结构观察和定量表征实验,并基于体相气体传输机理,探讨了页岩游离气的传输特征、临界条件及动态演化规律。(1)深层页岩储层孔隙形态特征与中浅层差别不大,但中孔的孔隙结构特征更加明显,孔体积占比为62.5%~69.7%;(2)深层页岩游离气传输方式分为过渡流、滑脱流和达西流三类,永川地区页岩游离气划分3种传输方式的临界孔径分别为4.2 nm和420 nm,在此基础上建立了全盆地页岩游离气传输图版;(3)从浅层到深层,页岩游离气不同传输方式对应的临界孔径随之变小,游离气传输方式从以过渡流为主(最高占比达63.0%)转变为以滑脱流为主(最高占比达67.3%),达西流占比不超过2%;页岩游离气传输能力从浅层到中层随埋深增加快速下降,中深层页岩游离气传输能力随埋深增加基本保持稳定。通过分析和对比深浅层页岩储层孔隙结构特征及游离气传输特征,研究成果...  相似文献   

11.
精确评价地质储量是页岩气藏开发规划的重要一步,虽然理论方法不断完善,但仍存在不足。在页岩气藏中,吸附气不仅包含甲烷,还存在一定比例的乙烷等其他烃类气体,应采用多组分吸附模型计算吸附气储量。同时,天然裂缝中大量存在的天然气也不能忽略。此外,干酪根中也溶解了一定的气体,忽略会导致较大误差。采用多组分吸附模型,考虑了吸附相占据的孔隙度、裂缝游离气及干酪根中的溶解气,建立了一种优化的页岩气藏地质储量计算模型。实例分析发现,裂缝游离气和溶解气占总储量的比例分别为10.41%和7.05%,传统方法计算得到的吸附气储量偏小,基质游离气储量偏大,总储量偏小。为了合理评价页岩气藏地质储量,应采用多组分吸附模型,考虑吸附相孔隙度且不能忽略裂缝游离气及干酪根中的溶解气。  相似文献   

12.
目前对于渗吸效应改变页岩气赋存状态的定量化认识尚未形成,对页岩储层中压裂液大量滞留所引起的气水动态置换规律也不明确。为此,开展了气水置换实验以模拟水力压裂后近井区域页岩含水状态的变化情况,借助于含氢流体低场核磁共振谱分析技术(1H-NMR)动态监测页岩储层中甲烷的赋存状态,并计算不同赋存状态下的甲烷气量,进而研究了渗吸效应对页岩气赋存状态的影响规律。研究结果表明:①页岩饱和甲烷的过程分为吸附主导阶段和孔隙填充阶段,吸附作用和压力梯度作用在页岩饱和甲烷的过程中同时发挥作用;②页岩饱和甲烷过程前期阶段优先饱和吸附气,游离态甲烷作为外部甲烷转换为吸附态甲烷的中间状态在页岩孔隙中赋存,吸附气达到饱和状态后,甲烷在压力梯度作用下填充页岩孔隙直至孔隙内外压力平衡;③渗吸效应使页岩发生气水置换作用,吸附态甲烷部分解吸为游离态甲烷,吸附气占比降低,渗吸时间达到80 h时吸附气占比由63.58%降低至45.87%,而游离气量增加使页岩孔隙压力升高,同时水分占据部分孔隙体积,压缩游离气赋存空间,部分游离气被排出页岩孔隙,储层含气性降低,页岩样品含气量由渗吸开始前的7.91 mL/g下降至7.34 mL/g;④水力压裂过程中,压裂液的大量滞留使页岩储层近井区域处于富含水状态,渗吸效应引发的气水置换作用和排替作用使得页岩孔隙及井筒等外部空间中甲烷游离气量升高,孔隙压力升高使得地层压力上升,在一定程度上有利于页岩气的开采。  相似文献   

13.
为探究页岩中龙马溪组储层孔隙结构及伊利石对甲烷的吸附能力,基于等温吸附实验、压汞、液氮及低温二氧化碳等实验,研究了龙马溪组页岩孔隙结构及伊利石的分布特征,利用巨正则蒙特卡洛法模拟了不同孔径的伊利石狭缝孔的吸附特征。结果表明:页岩中孔容与比表面积主要由小于2nm的孔隙提供;伊利石为龙马溪组页岩中黏土矿物主要成分之一,常构成平行或近平行板状孔隙;303.15K(30℃),8MPa条件下,孔径在0.5~0.9nm之间时,甲烷分子受范德华力和静电力的共同作用,甲烷过剩吸附量较大;孔径大于0.9nm之后,随着孔径增大孔壁表面电荷的静电力对甲烷分子作用减小,甲烷吸附主要受范德华力控制,甲烷过剩吸附量表现出先减小后基本保持不变的特征,游离气含量表现出随孔径增大而增加的特征;平均等量吸附热反映出伊利石对甲烷的吸附方式属于物理吸附。吸附过程中,孔径介于0.5~1.2nm之间时,随着孔径增大,平均等量吸附热迅速减小;孔径大于1.2nm时,甲烷分子与伊利石狭缝孔间的吸附强度基本稳定,平均等量吸附热为6.72kJ/mol;孔径介于0.5~0.8nm之间时,甲烷分子单层吸附于伊利石晶间处,甲烷局部密度表现出单峰的特征;孔径介于0.8~1.2nm之间时,吸附方式由单层吸附向双层吸附逐渐转变,局部密度曲线由单峰向双峰变化;孔径大于1.2nm时,可供甲烷分子吸附的自由体积较大,局部密度曲线表现为双峰特征。  相似文献   

14.
川南地区龙马溪组页岩高压甲烷等温吸附特征   总被引:1,自引:0,他引:1  
准确测定页岩吸附气含量对于页岩气储层的评价和开发都具有重要的意义,但目前国内外学者在页岩甲烷等温吸附实验中对模型选择、吸附模式及吸附特征参数的认识上存在着差异,并且对于高压等温甲烷吸附特性的研究较少。为此,在利用N_2/CO_2气体低压等温吸附实验对四川盆地南部地区下志留统龙马溪组页岩孔隙结构特征进行分析的基础上,采用重量法高压甲烷等温吸附实验,选取SDR、Langmuir、BET等3种不同的吸附模型对吸附态甲烷含量进行计算,并对样品甲烷吸附特征进行研究。研究结果表明:①页岩在0~50 nm孔径区间内比表面积分布具有双峰特征,孔体积分布具有三峰特征,较之于中孔,微孔比表面积发育较好,而其孔体积和非均质性均弱于中孔(D_1D_2);②3种模型中SDR和Langmuir模型的计算结果与实测值平均误差均小于6%,甲烷分子主要以单分子层与微孔充填吸附模式共存于页岩孔隙内;③在高压深埋藏情况下,温度是影响吸附态甲烷吸附量和密度值的主要因素,但热力学参数、孔隙结构、非均质性等也会对吸附态甲烷密度造成一定的影响;④低压阶段甲烷分子优先以单分子层形式吸附于吸附能较高、比表面积较大的孔径介于0.4~0.8 nm的微孔中,随后大部分甲烷分子以微孔充填与单分子层共存的形式吸附于孔径介于1.4~8.0 nm的微孔与中孔中,高压阶段极少部分甲烷以多分子层形式吸附于中孔及宏孔中。  相似文献   

15.
页岩气赋存形式和初始原地气量(OGIP)预测技术   总被引:7,自引:2,他引:5  
页岩气有利区或核心区评价的关键是确定页岩初始原地气量(OGIP)的空间分布,页岩气赋存形式介于致密砂岩气与煤层气之间,主要呈3种状态:孔隙中游离气、固体有机质吸附气、油和水中溶解气,温度和压力条件控制3种状态气体的量和相互转化。游离气量主控因素是页岩孔隙度和气体饱和度,吸附气量主控因素是有机质数量和有机质成熟度,溶解气量的主控因素是页岩中残留油的数量。提出了页岩气中游离气量、吸附气量和溶解气量的算法,并在油气系统模拟软件Trinity 3D中实现页岩气OGIP量空间分布计算,以Fort Worth盆地Barnett页岩为例展示了这一技术的实际应用。  相似文献   

16.
基质孔隙中页岩气包括孔隙中的自由气、孔隙壁面的吸附气、溶解于有机质中的溶解气,大量文献显示页岩孔隙和喉道皆为纳米级,尽管孔隙小、气体扩散慢,但页岩基质比表面较大、溶解气量大,溶解气的扩散作用具有重要影响。根据Farzam Javadpour渗流理论,假设页岩基质为岩石颗粒、黏土、干酪根的均质体,认为基质纳米孔隙中气体运移是压力作用下气体滑脱、克努森扩散、气体吸附解吸、溶解于干酪根中的气体向孔隙动力扩散等共同作用的结果,且吸附气符合Langmuir等温吸附机理,从而采用微元法推导出页岩气基质孔隙渗流模型。  相似文献   

17.
页岩复杂的孔隙结构对页岩气赋存状态、储量计算以及多尺度传质具有重要影响。运用压汞和氮气吸附法测定了页岩孔隙结构参数,基于不同孔径中的气体努森数,分析了孔隙尺度与页岩气传质方式的关系。结果表明:页岩压汞孔喉分布曲线呈现明显的三峰特征,直径小于100nm的纳米孔占页岩基块总储渗空间的80%~95%;页岩纳米孔平均直径为3.78~10.09nm,纳米孔具有巨大的BET比表面,77%~99%的比表面集中分布于孔径小于10nm的纳米孔内;基于气体动力学理论,在页岩多尺度孔隙中,页岩气的传质方式可划分为无滑脱渗流、存在滑脱渗流、过渡流动以及分子扩散,孔隙尺度控制着气体的传质方式;在页岩气藏开采的不同时期,不同孔隙尺度中的气体传质方式是动态变化的;在气藏开采中后期,页岩孔隙尺度是影响气体扩散类型和扩散系数的重要因素。   相似文献   

18.
页岩气藏的特点是无机基质孔隙、有机基质孔隙、天然裂缝孔隙、水力裂缝孔隙和吸附相孔隙并存。实验室和数学研究表明页岩气藏可以由五种孔隙度模型和干酪根溶解气储集机制来描述。基于Orozco和Aguilera方程,考虑页岩吸附气量和溶解气量随地层压力的变化以及两者对游离气储集空间的影响,建立页岩凝析气藏物质平衡方程。以Orozco和Aguilera文中的页岩凝析气藏为例,首先进行储量回归得到基质和裂缝游离气储量,再计算吸附气和溶解气储量以及总储量,然后根据各个储量所占比例计算一系列G_(pt)值(总的累计产气量),作p/Z_2(压力/两相气体偏差因子)和G_(pt)的关系曲线,与生产历史数据拟合较好。与Orozco和Aguilera的结果相比,总储量相差3%,各个储量所占比例也不尽相同。  相似文献   

19.
深层—超深层页岩气是四川盆地天然气增储上产的战略接替领域。基于志留系页岩气的大量勘探开发实践、实验测试资料和前瞻性研究成果,探讨了深层海相页岩气的赋存状态与聚集机制,指出了四川盆地深层页岩气的有利勘探区。页岩的纳米孔喉系统决定了其内部聚集的天然气呈现吸附态,主要以单分子层在微孔—介孔中吸附聚集。页岩吸附气量除受控于孔、缝的比表面积,还受TOC含量、温度、压力和含水性的影响。深层高温条件下,页岩储层的最大吸附气量较低,随着温度降低页岩的吸附能力增强,最大吸附气量也逐渐增加。页岩气在深层超压条件下主要以游离气赋存,呈超临界状态高密度聚集,游离气含量受储集空间及孔喉结构、埋藏深度、地层温度和压力、超临界流体性质以及页岩含水性等诸多因素综合影响。在抬升过程中,因构造改造的强度、时间和方式不同,页岩气的赋存相态转化及散失机制不同。其中,抬升幅度小且改造强度弱时,页岩气层仍保持深层"游离气为主,超压富气"的特性;抬升至中—浅层时,受断裂开启、剥蚀露头和页岩自封闭性降低等游离气散失机制影响,页岩气层的含气量和游离气量降低、吸附气占比增加,因此,远离剥蚀区、大断裂带的深埋藏区是深层页岩气的最有利富集区。四川盆地内部构造相对稳定,深层海相页岩气普遍保持着"早期滞留,超压富气"的成藏特征,优选宜宾—泸州地区、綦江—涪陵地区、永川—大足地区和垫江—梁平地区为有利勘探区。  相似文献   

20.
为探究页岩孔径结构对甲烷吸附能力影响,基于巨正则蒙特卡洛法并将高压压汞实验、低温N_2实验、CO_2吸附实验等物理模拟结果相比较,研究甲烷在页岩中的吸附能力。结果表明:页岩孔径分布在0.5~2.0 nm时页岩孔隙的过程吸附量随孔径增大表现出跃变式增加模式,孔径超过2 nm时页岩孔隙单位面积过剩吸附量不再发生明显变化。随着页岩孔径逐渐变大,各孔隙单位比表面积上的过剩吸附量随压力的增大均呈现出先增大后减小的趋势。实验获得的页岩比表面积变化特征为随孔径增加成反比的趋势,页岩的总比表面积主要是由不大于4 nm阶段的孔隙提供。甲烷在孔隙中的过剩吸附量随孔径的增大而不断减小,小于4 nm的孔隙贡献的吸附量占总吸附量的93.58%,吸附量与比表面积表现出正相关关系。该研究结果为评价富有机质页岩中甲烷赋存吸附特征提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号