首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
浮选颗粒-气泡矿化包括碰撞、黏附以及矿化气絮体升浮3个子过程,部分目的矿物会在矿化气絮体升浮过程中发生脱附,降低目的矿物浮选回收率,这也是粗颗粒浮选效率较低的根本原因。深入理解颗粒-气泡的脱附机理一直是浮选领域的研究热点与难点,更是实现粗颗粒浮选强化的前提条件。围绕矿浆相、泡沫相以及矿浆-泡沫相界面区3个脱附区域,综述了颗粒-气泡脱附机理最新的研究进展,以期为粗颗粒浮选强化提供理论指导。湍流与气泡兼并脱附分别是颗粒在矿浆相和泡沫相中发生脱附的主要机制,而矿浆-泡沫相界面区颗粒脱附机理尚存在争议,一种观点认为矿化气絮体撞击界面时动能的改变导致脱附,另一种观点认为界面处气泡兼并引起的气泡振荡才是脱附的主要原因,该区域的脱附机理尚需进一步探索。最后提出了未来颗粒-气泡脱附机理研究的发展方向,包括矿浆相多种脱附机制协同作用、宽粒级物料的原位脱附过程及其粒度匹配效应、矿化气泡在相界面处碰撞及兼并脱附过程的能量演化竞争机制。  相似文献   

2.
脱附是导致粗颗粒浮选回收率低的重要原因。为了探究疏水性颗粒-气泡间脱附行为机理,利用自 制的浮选颗粒-气泡脱附测试系统对不同疏水性颗粒的脱附过程进行观测,借助 Image-Pro Plus 图像处理软件对颗 粒-气泡间接触角、三相润湿周边变化进行测量。结果表明:颗粒脱附过程中接触角并非保持不变,而是存在明显 的接触角滞后,接触角为 67.0°、83.9°和 98.7°的 3 种疏水性颗粒在达到前进接触角 106.7°、119.3°和 128.3°后三相润 湿周边开始滑动收缩。区别于传统三相润湿周边滑动脱附机制,发现在三相润湿周边滑动阶段为了保证颗粒前进 接触角不变,不可避免地会在颗粒表面形成反向毛细颈部,且反向毛细颈部处曲率随着三相润湿周边的收缩而快 速增加,并最终在拉普拉斯压力作用下发生断裂脱附,在颗粒表面留下微气泡。同时由于三相润湿周边滑移速度 随着颗粒疏水性的增加而降低,因此反向毛细颈部处曲率增加速率随颗粒疏水性的增加而增加,导致最终颗粒表 面残留微气泡大小也随颗粒疏水性的增加而增加。  相似文献   

3.
通过颗粒气泡脱附高速动态测试系统,研究了颗粒气泡脱附过程动力学。运用Image-Pro Plus图像处理软件测量颗粒气泡间接触角、三相润湿周边,计算颗粒气泡间毛细黏附力随颗粒运动时间的变化。结果表明:颗粒从气泡表面脱附主要分为气泡拉伸变形接触角增大和气泡滑动三相润湿周边减小两个阶段。气泡拉伸阶段,三相润湿周边固定在颗粒表面,接触角由平衡接触角增大到前进接触角;气泡滑动阶段,接触角保持不变,三相润湿周边滑动减小。毛细黏附力在气泡脱附过程中随接触角增大而增大,随三相润湿周边滑动而减小,当外力超过颗粒气泡间临界黏附力时,颗粒从气泡表面脱附。  相似文献   

4.
为表征低阶煤颗粒-气/油泡间矿化过程的差异,通过Sutherland理论下固体颗粒进入泡沫产品的总概率(E)和浮选速率常数(k)之间关系,并结合低阶煤颗粒-气/油泡的浮选速率试验,求得了低阶煤颗粒-气/油泡间的诱导时间。浮选实验研究表明,在相同的捕收剂消耗量下低阶煤-油泡浮选产率均高于低阶煤-气泡浮选产率。诱导时间测试表明,低阶煤颗粒-油泡间的诱导时间(35 ms)要明显低于低阶煤颗粒-气泡间的诱导时间(93 ms)。上述实验结果表明,油泡表面的疏水性要强于传统浮选气泡表面的疏水性。然而,进一步利用Sutherland理论中固体颗粒进入泡沫产品的总概率和浮选速率常数之间的数学关系,并结合低阶煤颗粒-气/油泡的浮选速率试验求得的低阶煤颗粒-气/油泡间的诱导时间分别为9.67和8.46 ms,其与诱导时间测试仪分别测量的诱导时间差异很大。这主要是由于在实际浮选过程中气/油泡的上升速度分别为23.26和22.68 cm/s,其远高于2015EZ型诱导时间仪测试过程中气/油泡碰撞速度(2.0 cm/s)。因此,诱导时间理论计算表明气泡-颗粒间的碰撞速度对颗粒-气泡间的诱导时间影响很大。上述研究结果表明油泡浮选效果优于传统浮选的内在原因在于低阶煤颗粒-油泡间的诱导时间小于低阶煤颗粒-气泡间的诱导时间。  相似文献   

5.
颗粒气泡黏附指从颗粒与气泡相遇开始到液膜发生薄化破裂最后至三相润湿周边铺展形成稳定矿化气絮体的过程,是浮选中的核心作用单元。然而浮选颗粒气泡黏附机理至今仍不明确。黏附过程主要受颗粒气泡的表面物理化学性质及溶液化学条件影响,表面力及流体作用力协同支配微纳尺度下颗粒气泡间液膜薄化破裂行为。排液过程中气液界面的变形效应进一步增加了系统复杂性,上述因素使得颗粒气泡黏附的理论研究及试验探索步履维艰。早期关于颗粒气泡黏附的研究主要聚焦于黏附概率,其中宏观尺度下的诱导时间测试占据主导地位,通过诱导时间结果计算黏附概率。对国内外宏观尺度下颗粒气泡黏附概率模型及研究技术手段进展展开全面综述,并对现有技术瓶颈及局限进行分析。诱导时间测量仪及高速动态摄影技术大大促进了浮选工作者对颗粒气泡黏附的理解,“诱导时间与实际浮选回收率具有着良好的相关关系”也已经被广泛证明。然而因微纳尺度下的表面力及液膜薄化动力学信息的缺失导致宏观诱导时间并不能从基础层面揭示颗粒气泡的黏附机理,微纳尺度下颗粒气泡间相互作用力及液膜薄化动力学的定量测试表征是技术发展的必然趋势,其可为浮选微观矿化反应过程提供新的理论视角,同时也为难浮煤及难选矿浮选过程强化提供理论支撑。  相似文献   

6.
煤泥盐水浮选技术   总被引:3,自引:1,他引:2  
盐水对浮选体系下颗粒与气泡行为的影响规律进行了综述。浮选矿浆中的无机盐电解质在提高精煤可燃体回收率的同时也增加了脉石矿物的回收。反电荷阳离子在煤粒表面吸附改善颗粒疏水性,颗粒-气泡间的液膜排液速度因双电层被压缩而加快;同时电解质兼有起泡剂的效果,能有效阻止气泡兼并聚合。另一方面,盐水浮选体系下细粒脉石颗粒的水流夹带和聚合截留现象严重,可燃体回收与脉石颗粒非选择性上浮之间的矛盾激增。  相似文献   

7.
为了研究浮选过程中的气泡与微细粒煤泥之间的碰撞效率,提出了一种基于数值模拟软件FLUENT的碰撞效率数值计算方法,并采用此方法模拟了微观尺度下不同颗粒粒径、颗粒密度、气泡直径、流场湍流强度下单气泡与颗粒碰撞行为,计算出气泡-颗粒间的碰撞效率,得到各因素对单气泡与颗粒碰撞效率的影响规律。结果如下:颗粒粒度和气泡尺寸是影响气泡颗粒间的碰撞效率的主要因素。随着颗粒粒度、密度以及湍流强度的增加,碰撞效率增大。在静水中,碰撞效率随气泡尺寸的增大而增大;在湍流中,随着气泡尺寸变大,碰撞效率呈减小趋势。  相似文献   

8.
为了研究(十二烷基三甲基溴化铵)DTAB 对石英-气泡间相互作用的 影响,采用黏附/脱附测试系统、接 触角测量仪和表面张力仪对 DTAB 体系下亲水性石英玻璃基板与气泡间相 互作用力、表面接触角以及溶液表面张力 进行了测量。 结果表明:在 DTAB 体系中,石英玻璃基板与气泡间的黏附力 /脱附力随着 DTAB 浓度的增加先增加后 减小,在 DTAB 浓度为 1 mmol/L 时,脱附力达到最大,为 129. 9 μN; 石英玻璃基板表面接触角也呈现类似的变化规 律,在 DTAB 浓度为 4 mmol/L 时,接触角达到最大,为 51. 8°,较石英 玻璃基板与气泡间黏附力/脱附力而言,接触角的 变化具有一定的滞后性。 这是由于黏附力/脱附力受石英玻璃基板表面 接触角和表面张力协同支配,在 DTAB 存在体 系下,当接触角达到最大时,溶液表面张力已下降至 35. 95 mN/m,导致 石英玻璃基板与气泡间黏附力/脱附力提前出 现下降趋势。 进一步用浮选动力学试验加以验证,浮选结果表明,当浮选体 系中加入 1 mmol/L DTAB 时可以获得精 矿产率为 97. 10%的指标。 浮选结果与黏附力/脱附力曲线得到的结果 保持一致。  相似文献   

9.
本文评述了最近开发的浮选设备的基本原理;提出了一种新的由空穴化/气体核化而捕集颗粒的机理.理论分析和实际应用均已证明,空穴化和气体核化加快了颗粒附集于气泡的过程和浮选速度,并提供了一种改进浮选槽设计的方法。本文着重讨论了一种两段附着模型,并用此种模型来解释最近开发的某些浮选设备为什么提高了浮选速度.在第一阶段,生成气核/空穴,并附着于颗粒表面,这个阶段可采用搅拌,提高矿浆中溶解气体的含量以及液动空穴化来强化;在第二阶段,用传统浮选型气泡来捕集被气核活化的颗粒,这个阶段可采用静流条件和提高气体滞留量来强化。  相似文献   

10.
浮选槽中固—液—气三相流中颗粒的速度   总被引:2,自引:0,他引:2  
采用PDA激光流速测试技术,在固-液-气三相体系中对浮选槽中固体颗粒进行了流速测定,获得了固体颗粒的速度分布,为矿粒与气泡粘附过程和脱附过程机理的研究提供可靠数据。  相似文献   

11.
为探明浮选中起泡剂浓度对气泡及其尾涡区特征的影响,预测颗粒在浮选气泡尾涡区的卷吸概率,通过实验室自制的拟上升气泡装置及粒子图像测速系统,研究了不同浓度仲辛醇条件下的气泡尾涡区流场特征,分析了气泡表面流体分离行为及尾涡特征;通过高速摄像系统的同步观测,研究了气泡的形态特征以及颗粒在气泡尾涡区的轨迹和分布概率。研究结果表明:随着起泡剂浓度的增加,气泡的尺寸略有减小而长径比逐渐增大;气泡边界层分离角随起泡剂浓度的增加逐渐增加,存在临界分离角196.70°;气泡引起的尾涡主要集中在流场流速小于0.09 m/s的区域,气泡尾涡区高度随起泡剂浓度的增加逐渐减小,存在最小尾涡区临界值为气泡直径的1.06倍;颗粒在气泡尾涡区存在3种运动轨迹,颗粒卷吸的运动轨迹可以分为3个显著阶段,颗粒受力是导致其卷吸类型区别的关键因素;随着起泡剂浓度的增加,颗粒被卷吸的范围与概率逐渐减小。影响气泡尾涡及颗粒运动的临界浓度均为1.6×10-4 mol/L。研究结果明晰了起泡剂浓度对矿物颗粒在气泡尾涡区卷吸的机理,为微细矿物浮选技术的发展提供了有价值的指导。  相似文献   

12.
开发出了一种新的在线絮凝法,它与快速浮选法结合,可以分离出充了气的絮团(其絮团内捕俘有气泡).只有在高分子聚合物和气泡存在时及特殊絮凝器的高剪切条件(和压头损失)下,才能形成这种充了气的絮团.多余的空气从浮选槽顶部排出,在很短的时间(几秒钟)内形成的絮团浮起.充了气的絮团是密度很低的大尺寸(直径为几个毫米)集合体.在各种情况下,该法的分选效率决定于压头损失大小、絮凝剂的种类和浓度及空气流量.絮凝-浮选法的机理包括:形成小的气泡、气泡快速地进入絮团内、在絮团-水界面上气泡形成气核、聚合物卷绕、在水-气界面上产生盐析效应和在絮凝器中形成柱塞混合流.试验表明,可成功地用絮凝-浮选法从水中除去乳化的油和固体.和在高的流体负载下(〉130 m/h),其除去率高于90%.这种絮凝-浮选法可用于固-液分离和液-液分离中.  相似文献   

13.
浮选中颗粒-气泡间相对运动研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
颗粒-气泡间相对运动的研究对浮选机理的认知至关重要,对新型浮选机的开发和提高浮选效率均具有指导意义,本文系统综述了颗粒-气泡间相对运动的研究进展。早期研究过程中,研究者忽略了颗粒和气泡性质的影响,将颗粒视为随流线运动的点,气泡视为刚性球体,利用流线方程对颗粒-气泡间的相对运动展开研究;随着认知过程的不断深入,颗粒和气泡物理化学性质的影响逐步得到了关注,研究者分别从颗粒惯性力、重力、形状和粗糙度以及气泡表面流动性等方面并展开了大量研究;颗粒-气泡间相对运动的试验研究多通过颗粒沉降法进行,研究对象由单个玻璃微珠发展为大量矿物颗粒,且出现了关于运动玻璃球与上升气泡之间相对运动的研究。研究表明,当颗粒粒度较细、密度较小时,利用流线方程对颗粒-气泡间相对运动的研究具有一定的适用性;当颗粒粒度较粗、密度较大时,需考虑正负惯性力、重力等因素对颗粒-气泡间相对运动的影响。此外,颗粒形状的不规则性会影响颗粒周围液体对颗粒的作用力,导致临界碰撞半径减小,且颗粒表面不规则的凸起会促进颗粒-气泡间水化膜的破裂,减少诱导时间,增大颗粒表面粗糙度有助于增强颗粒-气泡间的黏附强度。气泡表面的流动性可采用"滞留帽"模型进行分析,具有较好的适用性。对于颗粒-气泡间相对运动的试验研究主要采用颗粒沉降法,亲水玻璃微珠只能在气泡上半球滑行,到达气泡赤道位置附近后便离开气泡,疏水玻璃微珠会刺破颗粒-气泡间的水化膜,越过气泡赤道后会继续沿气泡表面滑行并最终黏附在气泡底部,煤颗粒与气泡的黏附效率随碰撞角和密度的增大而减小。然而目前的试验研究多集中于静水领域,对于浮选流场中颗粒-气泡间相对运动的试验研究尚需进一步探索。  相似文献   

14.
王天威  彭耀丽  夏文成  谢广元 《煤炭学报》2018,43(12):3498-3503
粗颗粒煤泥易于脱附是限制粗颗粒煤泥浮选的主要因素,为了探究粗颗粒煤泥在柱体内轴向的脱附规律,运用一种可在浮选柱给料口上方不同轴向位置添加上升水流的自制流化床浮选柱使浮选柱给料口以上的上升水流表观流速大于粗颗粒粒群的最大沉降末速,从而将经气泡携带至给料口以上的粗颗粒带入泡沫产品,减少在给料口以上因粗颗粒脱附而引起的精煤损失。研究结果表明,难浮粗煤粒在柱体轴向的脱附率和柱体轴向高度之间成线性关系,且界面脱附约占总脱附率的40%,从而证明难浮粗颗粒的主要浮选缺陷是脱附概率大,通过在给料口以上添加上升水流或者降低给料口以上柱体高度可有效实现难浮粗颗粒的浮选。  相似文献   

15.
颗粒-气泡黏附是浮选核心作用单元,驱动其自发黏附的主要作用为疏水颗粒-气泡间疏水引力。作为长程疏水引力主要来源,界面纳米气泡对浮选界面调控有重要影响。从纳米气泡的基本性质、稳定性机理及浮选强化机制3个方面进行了系统讨论。纳米气泡异常稳定性和接触角一直是近20 a来的研究热点。经典物理学理论预测纳米气泡寿命在微秒尺度,而试验发现纳米气泡寿命通常可达数天以上。针对纳米气泡异常稳定性提出污染物层、动态平衡、三相线钉扎等假说,然而各假说均无法解释所有试验现象,其稳定性机理仍需要深入研究。纳米气泡接触角(气侧)远小于Young接触角,高密度气体导致的固-气界面能降低可能是接触角异常的主要原因。对纳米气泡强化浮选黏附机制进行了探讨,一方面界面纳米气泡可通过边界滑移促进颗粒-气泡碰撞过程中液膜排液,另一方面纳米气泡桥接使颗粒-气泡出现长程引力,同时颗粒-气泡间的DLVO力由排斥力转变为引力,从而促使颗粒-气泡黏附。目前已有试验表明纳米气泡在煤、磷酸盐、白钨矿及铁矿石等多种矿物的浮选中均有显著提升效果。在浮选日益精细化的背景下,纳米气泡强化技术可为浮选界面调控提供新的理论视角与技术手段,是未来浮选领域...  相似文献   

16.
本文评述了最近开发的浮选设备的基本原理;提出了一种新的由空穴化/气体核化而捕集颗粒的机理。理论分析和实际应用均已证明,空穴化和气体核化加快了颗粒附集于气泡的过程和浮选速度,并提供了一种改进浮选槽设计的方法。本文着重讨论了一种两段附着模型,并用此种模型来解释最近开发的某些浮选设备为什么提高了浮选速度。在第一阶段,生成气核/空穴,并附着于颗粒表面,这个阶段可采用搅拌,提高矿浆中溶解气体的含量以及液动空  相似文献   

17.
煤泥浮选是选煤厂提质增效的重要环节,以无机盐离子为基本要素的溶液化学环境对煤泥.浮选过程具有重要影响。文章以溶液体系中常见的无机盐一NaCl为调控因素,研究了NaCl对无烟煤煤泥浮选过程的影响。采用气泡尺寸检测、气泡破裂时间检测、聚焦光束反射测量等技术手段研究了NaCl对浮选体系气泡尺寸和颗粒聚集行为的影响。结果表明:NaCl可以显著降低气-液两相体系的气泡尺寸,0.4mol/L的NaCl对气泡尺寸的降低作用与9 mg/L的仲辛醇相当;NaCl促进了矿浆体系中的颗粒聚集,0.6mol/L NaCl溶液的加入使矿浆中颗粒的平均弦长由28.5μm增大至40μm;NaCl对气泡尺寸和颗粒聚集行为的调控作用对煤泥浮选过程具有显著的促进作用,在氯化钠浓度为0.6 mol/L条件下,浮选精煤可燃体回收率可从26.32%提高至74.04%.  相似文献   

18.
《煤炭技术》2017,(11):325-327
对电解质强化煤泥浮选效果的机理进行了综述。电解质的添加可以薄化矿物颗粒表面的水化膜,压缩气泡与颗粒表面的双电层,降低气泡与颗粒表面的静电斥力,有利于气泡的矿化。同时电解质有利于阻止气泡的兼并,降低气泡的尺寸,增加浮选体系中微小气泡的数量,提高浮选的动力学,并在一定浓度范围内增加浮选泡沫的稳定性。  相似文献   

19.
煤气化渣因炭、灰包裹夹杂严重、嵌布粒度细,导致浮选分离困难,制约了其资源化利用。浮选大多发生在湍流环境中,调控湍流是强化微细颗粒矿物浮选回收的有效途径,湍流小尺度涡直接作用于微细颗粒运动,研究借助涡流发生器实施湍流涡调控以进行煤气化渣中的炭-灰浮选分离过程强化。利用计算流体力学数值模拟对涡流矿化管内部流场进行数值计算,分析涡流发生器结构对湍流特征参量及煤气化渣浮选指标的影响,在此基础上设计了与矿物可浮性相适配的梯级涡流浮选过程。结果表明:管内矩形涡流发生器可诱导出发卡涡、流向涡及旋转方向相反的二次流向涡对,涡-涡、涡-主流之间的交互作用显著提高了湍流动能、降低了涡尺度,有利于微细颗粒与气泡间的碰撞。涡流发生器的倾斜角度从25°增至55°时,湍流动能均值由0.041 m2/s2增到0.142 m2/s2,最小涡尺度均值由16.10μm减至10.34μm。采用内置结构相同涡流发生器的均衡涡流浮选装置对煤气化渣进行炭-灰浮选分离试验,不同粒级浮选回收率表明,粒度越细,需要的湍流动能越大、涡尺度越小,诱发的...  相似文献   

20.
这篇论文回顾了最近发展的浮选设备的基本原理。提出了借助空穴气核来捕收颗粒的机理,理论分析空穴/气核加速颗粒-气泡吸附提高浮选速度的实际应用证明了这一机理,同时提供了改进浮选设备设计的方式,着重强调二段吸附模型。一些浮选槽采用了这个模型所取得的快速浮选的效果可解释为二段吸附作用的结果。第一阶段是气核/空穴的产生以及在矿浆和流体空穴里通过搅拌和高溶解气体含量加强气核/空穴与颗粒表面的接触。第二阶段,也就是通过高气体含量和静流条件来加强用传统的浮选粒度气泡捕集气核-活化颗粒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号