首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
节能住宅全寿命周期费用研究   总被引:6,自引:0,他引:6  
从节能住宅全寿命周期费用的涵义入手,对节能住宅考虑全寿命周期费用的必要性、全寿命周期费用的构成及进行全寿命周期费用分析的时机等方面做了较为详细的分析与论证.  相似文献   

2.
从对节能住宅进行全寿命周期费用分析的重要性出发,通过对影响节能住宅全寿命周期费用的因素入手,建立了基于系统动力学的全寿命周期费用影响因素系统模型,并以兰州鸿润园节能住宅作为实证研究对象,运用系统动力学 Vensim-PLE 仿真软件进行分析,结果显示:节能率的大小、是否考虑资金时间价值和寿命期的长短均对全寿命周期费用具有显著影响,节能程度越高的住宅,在考虑资金时间价值的情况下,使用寿命越长,它的全寿命周期费用也就越低。分析结果对消除人们在节能投入认识上的“误区”、政府建设行政主管部门组织编制建筑节能方面设计规范与标准、开发商和业主建设与购买节能住宅均提供了可靠的经济性参考依据。  相似文献   

3.
文章阐述了节能住宅推广和建设的现状,运用全寿命周期成本理论,构建了节能住宅全寿命周期成本模型,并进行了费用估算。以实际项目为例,证明了节能住宅与非节能住宅相比,不仅可以减少能耗,保护环境,提高居住的舒适性,还可以节约运营维护费用,降低全寿命周期成本。经过分析证明,节能住宅的建设成本比非节能住宅多6.75%,但这些成本可以在13年内全部收回。  相似文献   

4.
文章阐述了钢结构住宅推广和建设的现状,运用全寿命周期成本理论,构建了钢结构住宅全寿命周期成本模型,并进行了费用估算。通过工程案例分析,对钢结构和钢筋混凝土结构2种住宅方案的全寿命周期成本做了对比。结果表明,钢结构住宅体系的全寿命周期成本较低,同时在节能、节地、节材、节水、环境保护方面具有优越性。  相似文献   

5.
以工业化住宅为例,基于全寿命周期成本分析理论,研究了工业化建筑全寿命周期阶段划分及全寿命周期成本组成。以龙信建设集团开发的龙馨家园项目为实证背景,定量对比分析了工业化住宅与传统住宅在全寿命周期中的不同阶段成本。通过数据对比发现:工业化住宅全寿命周期成本增加的费用主要发生在建设阶段,减少的费用主要发生在使用阶段和处置阶段。基于全寿命周期角度分析看出:随着工业化住宅技术体系的完善和建造规模的扩大,其优势愈加显著。  相似文献   

6.
节能住宅全寿命期经济效益及实证分析   总被引:1,自引:0,他引:1  
以节能住宅全寿命期费用分析为基础,构建其全寿命期经济效益评价模型,并以重庆地区某节能住宅为实例进行计算,通过分析其全寿命期所取得的良好经济效益,加深消费者对节能住宅的认同,从而促进节能住宅的推广。  相似文献   

7.
张晓丹  戚豹 《城市住宅》2015,(11):60-63
钢结构住宅采用新型节能墙体能有效提高围护体系的节能效果。从建筑全寿命周期的角度,通过实例分析,对钢结构和钢筋混凝土结构两种形式住宅的围护结构进行了经济评价。说明采用新型墙体虽然使得建造成本有所增加,但是减少了使用过程中的能耗,节约了运营费用,同时也降低了全寿命周期成本。从而为积极发展和应用这种新型节能墙体提供理论参考,进而推动我国钢结构住宅的进一步开发与推广,促进住宅产业化进程。  相似文献   

8.
基于对绿色住宅建筑全寿命周期增量成本与效益的研究,首先,对绿色住宅建筑基本内容进行相应阐述。然后,对绿色住宅建筑全寿命周期增量成本中的前期成本、绿色技术成本以及施工成本进行分析。最后,分析绿色住宅建筑全寿命周期的经济效益、环境效益、社会效益、以及节能技术效益。  相似文献   

9.
对节能改造全寿命周期费用进行估算,对于节能改造投资决策与实施都有着显著的现实意义,将节能改造全寿命周期划分为前期准备期、改造实施期与维保运营期,识别了节能改造全寿命周期费用,将模糊神经网络应用于节能改造费用估算过程中,构建了改造实施阶段费用模糊神经网络估算模型,并通过实际案例验证了该模型的准确性与适用性。研究表明利用模糊神经网络模型可对节能改造项目费用实施估算,结果可靠,具有定的适用性。后提出了若干实用性建议。  相似文献   

10.
住宅建筑的全寿命周期能耗研究   总被引:1,自引:0,他引:1  
以全寿命周期理论为基础,将其运用到建筑领域,从而把住宅建筑全寿命周期边界划定为6个阶段并对其各阶段进行能耗研究,列出了各阶段能耗的简单计算公式。运用DeST-h软件对建筑运行阶段的能耗进行了模拟计算,并以此进行了实例的运用分析,最后提出了住宅建筑在全寿命阶段的节能措施。通过对住宅建筑全寿命周期能耗分析,有助于人们对建筑运行能耗以外的其他隐性能耗加以重视,从而更全面的促进建筑的节能减排。  相似文献   

11.
以中国5个典型城市的气候条件为例,提出住宅建筑气候适应性优化设计流程。基于Grasshopper参数化性能分析平台,和Ladybug/Honeybee环境分析插件,以热环境舒适度模型、建筑能耗模型和建筑生命周期成本模型为目标函数进行优化分析。发现哈尔滨和北京气候条件下,住宅建筑应选择nZEB'(权衡最优)设计参数,而上海、昆明和深圳气候条件下,C-O(成本效益最优)解决方案比nZEB(节能最优)解决方案的综合效益更好。基于参数化性能模拟的多目标优化可以有效辅助住宅建筑的气候适应性设计研究。  相似文献   

12.
基于全寿命周期成本理论的既有建筑节能经济效益评价   总被引:5,自引:2,他引:3  
为了对既有建筑节能改造的经济效益进行评价,本文采用全寿命周期成本理论,界定了既有建筑节能改造项目的全寿命周期概念,分析了既有建筑节能改造项目的全寿命周期成本的组成,建立了既有建筑节能改造项目的经济效益评价模型及评价指标。  相似文献   

13.
为了全面掌握我国城市住宅建筑的全生命期能源消耗情况,文章运用全生命期评价模型对我国2007年所建城市住宅的能耗总量加以计算,同时借助敏感度分析方法对总能耗的敏感因素进行识别。研究结果表明,运行能耗在全生命期能耗中所占比例为70%;在能源消费结构方面,煤炭和电力占据了总能耗的80%;全生命期能耗量对于建筑采暖能耗密度和其他生活终端能耗密度较为敏感。该研究加深了对我国城市住宅全生命期能源消耗的了解,将推动全生命期评价模型在我国建筑领域的应用。  相似文献   

14.
This paper presents a comparison of environmental impacts of two residential heating systems, a hot water heating (HWH) system with mechanical ventilation and a forced air heating (FAH) system. These two systems are designed for a house recently built near Montreal, Canada. The comparison is made with respect to the life-cycle energy use, the life-cycle greenhouse gas (GHG) emissions, the expanded cumulative exergy consumption (ECExC), the energy and exergy efficiencies, and the life-cycle cost. The results indicate that the heating systems cause marginal impacts compared with the entire house in the pre-operating phase. In the operating phase, on the other hand, they cause significant environmental impacts. The HWH systems with a heat recovery ventilator (HRV) using either electricity or natural gas have the lowest life-cycle energy use and lowest ECExC. The HWH and FAH systems using electricity as energy source have the lowest GHG emissions. Finally, the FAH systems have, on the average, a lower life-cycle cost than the HWH systems.  相似文献   

15.
Energy efficiency in new building construction has become a key target to lower nation-wide energy use. The goals of this paper are to estimate life-cycle energy savings, carbon emission reduction, and cost-effectiveness of energy efficiency measures in new commercial buildings using an integrated design approach, and estimate the implications from a cost on energy-based carbon emissions. A total of 576 energy simulations are run for 12 prototypical buildings in 16 cities, with 3 building designs for each building-location combination. Simulated energy consumption and building cost databases are used to determine the life-cycle cost-effectiveness and carbon emissions of each design. The results show conventional energy efficiency technologies can be used to decrease energy use in new commercial buildings by 20-30% on average and up to over 40% for some building types and locations. These reductions can often be done at negative life-cycle costs because the improved efficiencies allow the installation of smaller, cheaper HVAC equipment. These improvements not only save money and energy, but reduce a building’s carbon footprint by 16% on average. A cost on carbon emissions from energy use increases the return on energy efficiency investments because energy is more expensive, making some cost-ineffective projects economically feasible.  相似文献   

16.
The importance of the built environment from an environmental impact and energy use perspective is well established. High thermal efficiency of the constructed building envelope is a key strategy in the design and construction of buildings which limit use of active space conditioning systems. Australia's current housing stock is thermally poor and national energy performance standards are relatively weak when benchmarked against international best practice. A lack of data has impeded the policy debate and a significant gap in analysis remains a lack of empirical research into the life-cycle cost implications of increased building thermal efficiency, particularly for residential buildings. This paper applies an integrated thermal modeling, life cycle costing approach to an extensive sample of dominant house designs to investigate life cycle costs in a cool temperate climate, Melbourne Victoria. Empirical analysis provides new insights into lifetime costs and environmental savings for volume housing design options and identifies sensitive factors. Results suggest that the most cost-effective building design is always more energy efficient than the current energy code requirements, for the full time-horizon considered. Findings have significant policy implications, particularly in view of present debates which frequently present higher energy efficiency standards as prohibitive from a costs perspective.  相似文献   

17.
As states in the U.S. adopt new energy codes, it is important to understand the benefits for each state and its building owners. This paper estimates life-cycle energy savings, carbon emission reduction, and cost-effectiveness of conventional energy efficiency measures in new commercial buildings using an integrated design approach. Results are based on 8208 energy simulations for 12 prototypical buildings in 228 cities, with 3 building designs evaluated for each building-location combination. Results are represented by easy-to-understand mappings that allow for regional and state comparisons. The results show that the use of conventional energy efficiency technologies in an integrated design framework can decrease energy use by 15-20% on average in new commercial buildings, and over 35% for some building types and locations. These energy reductions can often be accomplished at negative incremental life-cycle costs and reduce a building's energy-related carbon footprint by 9-33%. However, generalizing these results on energy use, life-cycle costs, and carbon emissions misses exceptions in the results that show the importance of location-specific characteristics. Also, states do not appear to base energy code adoption decisions on either potential energy savings or life-cycle cost savings.  相似文献   

18.
本文构建了项目全寿命周期生态足迹模型,涵盖全寿命周期消耗的能源、资源、产出的CO2、固体垃圾4个方面的生态足迹,提出了全寿命周期生态足迹空间效益指标,用于评价建筑项目的生态可持续性。研究了严寒地区4种不同结构类型(砖混平房、多层砖混楼房、多层钢混楼房、高层钢混楼房)住宅建筑的生态足迹和生态可持续性。结果表明,相比于平房,体形系数和窗墙比较小的高层住宅楼的生态可持续性高;在层数、体型系数和窗墙比都相同的情况下,钢混结构比砖混结构住宅楼的生态可持续性高;4种结构类型住宅楼中,高层钢混结构的生态可持续性较高,是较适宜推广的建筑结构类型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号