首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应变速率对管线钢近中性pH值环境敏感开裂的影响   总被引:5,自引:0,他引:5  
方丙炎  韩恩厚  王俭秋  柯伟 《金属学报》2005,41(11):1174-1182
以X-70管线钢近中性pH值溶液(NS4和实际土壤溶液)为研究对象,研究了恒载荷、慢应变速率拉伸(SSRT) 和循环蓑荷等不同条件下的环境开裂行为.结果表明,在该体系中局部应变速率是联系各种不同断裂过程的纽带,决定着断裂的模式.当该局部应变速率低于发生应力腐蚀开裂(SCC)敏感局部应变速率的上限(即5×10-5 s-1)时, SCC才能够发生;在循环载荷作用下,当该局部应变速率高于此上限时,将发生力学因素起主导作用的腐蚀疲劳(CF)开裂;该局部应变速率继续升高时,将发生机械断裂.对X-70管线钢在近中性pH值的环境开裂,不论开裂过程是溶解或(和)氨的作用占主导,均受局部应变速率控制.在通常遇到的现场服役条件下, X-70管线钢在近中性pH值溶液中的开裂模式是SCC,不是CF,应称之为“近中性pH值应变促进腐蚀开裂”,实质上这是一种由局部应变速率决定的环境开裂行为.  相似文献   

2.
膜致应力对应力腐蚀裂尖力学特性的影响   总被引:1,自引:0,他引:1  
氧化膜破裂理论是目前定量预测核电高温水环境中镍基合金应力腐蚀开裂速率应用最为广泛的理论模型之一,其中应力强度因子是衡量应力腐蚀开裂速率的重要参量。为进一步了解氧化膜破裂机理及裂纹扩展驱动力特性,提出了膜致应力强度因子。为了深入了解膜致应力强度因子在 EAC 裂纹扩展过程中裂尖的力学状况,在不考虑外载的情况下,从理论和数值模拟两方面分析研究了EAC 裂尖基体金属区域的应力应变分布状态,得出了膜致应力强度因子对裂尖Mises应力、等效塑性应变、拉伸应力、拉伸应变及拉伸应变梯度的影响规律,为提高定量预测高温高压水环境中镍基合金及不锈钢 EAC 扩展速率精度奠定基础,进而完善了氧化膜破裂机理。  相似文献   

3.
马宏驰  吴伟  周霄骋  王亮 《表面技术》2018,47(11):126-133
目的 对比研究原始、固溶和敏化态的304和321奥氏体不锈钢在模拟加氢催化氯化铵环境中的应力腐蚀(SCC)行为及机理。方法 将304和321奥氏体不锈钢经过热处理制备成固溶和敏化态试样,采用U形弯试样在模拟加氢催化氯化铵环境中浸泡的应力腐蚀试验方法对其进行研究,通过观察U形弯弧顶的腐蚀形貌和开裂时间,并结合腐蚀及裂纹的SEM照片和电化学测试结果进行分析。结果 原始和固溶状态304不锈钢U形弯试样在氯化铵溶液环境中开裂时间为25 d左右,断口形貌分别为穿晶断口和沿晶断口;敏化态试样18 d后发生开裂,断口形貌为穿晶和沿晶的混合断口。原始和固溶态321不锈钢U形弯试样在该环境中经过39 d均无应力腐蚀裂纹;敏化试样经30 d后产生宏观开裂。电化学测试结果显示,不同热处理态的304不锈钢在氯化铵溶液中均具有明显的点蚀敏感性,321不锈钢在该环境中耐点蚀和应力腐蚀的能力优于304不锈钢。结论 不同状态的304不锈钢在高温氯化铵环境中具有较强的应力腐蚀倾向,特别是敏化态试样;321不锈钢在该环境中的应力腐蚀敏感性相对较小,但敏化处理显著增加了其沿晶应力腐蚀倾向,而固溶态试样具有明显的沿晶腐蚀特征。  相似文献   

4.
Chloride-induced stress-corrosion cracking (SCC) is one of the failure modes of stainless steels. Highly alloyed austenitic stainless steels S32654, S31254, and N08028, and duplex grades S32750 and S31803 possess much improved resistance to SCC compared with S30400 and S31600 steels. With the development of a database, SSData, experimental data collected from calcium chloride tests, autoclave tests, and drop evaporation tests were evaluated. Stress-corrosion cracking data generated by autoclave tests agreed well with the practical service conditions and can be used to discriminate alloys for SCC resistance in sodium chloride solution. Drop evaporation test data can be used in situations where evaporation may occur and cyclic loading may be involved. The SCC resistance of alloys under each method increased with increasing molybdenum equivalent Mo + 0.25Cr + 0.1Ni. For a given alloy, the testing result depends on the stress state and environment; different test methods can give different ranking orders concerning SCC resistance. The performance of duplex stainless steels in a chloride-containing environment at higher temperatures was not as good as expected when dynamic loading was involved.  相似文献   

5.
核电站一回路压力容器、管道及蒸汽发生器等设备和结构中广泛采用镍基合金和奥氏体不锈钢,而这些材料的环境致裂(EAC)却是核电结构的主要安全隐患之一。研究表明,核电高温高压水环境中镍基合金的EAC是裂尖氧化膜破裂和再生成的一个过程。为了深入了解镍基合金EAC裂纹扩展过程中裂尖的力学状况,本文从理论和数值模拟两方面分析研究了EAC裂尖氧化膜和基体金属区域的应力分布规律,为提高定量预测高温高压水环境中镍基合金EAC扩展速率精度奠定基础。  相似文献   

6.
Stainless steels have a great variety of potential applications in the petroleum industry, mainly as an alternative to carbon steel in corrosive environments. Within a number of media that can cause corrosion problems with these materials, only chloride solutions and hydrogen sulfide are of importance in oilfield service. A reliable tool that permits the proper selection of stainless steels has yet been missing. In order to provide engineering diagrams for this purpose, pitting and stress corrosion cracking (SCC) tests were performed. Specimens were exposed to NaCl solutions containing from 3 to 100,000 ppm Cl? at temperatures from 40 to 200 °C. This test configuration was chosen to give a better representation of actual service conditions than accelerated standard test procedures do. Tested materials were the austenitic stainless steel grades 321, 316Ti (API LC30‐1812) and 254 SMO, and 22Cr duplex (austenitic‐ferritic) steel (API LC65‐2205). Based on an optical examination of the specimens, no‐risk regions of chloride concentration vs. temperature have been identified. Subsequently, service temperature limits have been deduced for each tested material. Thus, material failures by pitting and SCC can be prevented without overdesigning. The results of the testing series are applicable to all chloride environments without presence of H2S, as they have to be handled by primary production equipment, as well as transportation and gas processing facilities.  相似文献   

7.
Intergranular corrosion and intergranular stress corrosion cracking are the two localized corrosion mechanisms that are of concern to the typical applications of austenitic stainless steels in industries. Until recently, the common understanding was that a higher frequency of random boundaries increases the susceptibility, caused by a sensitization heat treatment or by operating temperatures, of austenitic stainless steels to both intergranular corrosion and intergranular stress corrosion cracking. A recent study demonstrated that extreme randomization of grain boundaries leads to a considerable improvement of resistance to both sensitization and intergranular corrosion. This work is a continuation of Ref. 1 and relates the effects of grain boundary randomization to intergranular stress corrosion cracking: the results show a trend consistent with earlier observations on intergranular corrosion. It is shown that there is improvement in resistance to intergranular stress corrosion cracking with extreme randomization of grain boundaries.  相似文献   

8.
Stress corrosion cracking (SCC) is a common mode of failure encountered in boiler components especially in austenitic stainless steel tubes at high temperature and in chloride-rich water environment. Recently, a new type of austenitic stainless steels called Super304H stainless steel, containing 3% copper is being adopted for super critical boiler applications. The SCC behavior of this Super 304H stainless steel has not been widely reported in the literature. Many researchers have studied the SCC behavior of steels as per various standards. Among them, the ASTM standard G36 has been widely used for evaluation of SCC behavior of stainless steels. In this present work, the SCC behavior of austenitic Fe-Cr-Mn-Cu-N stainless steel, subjected to chloride environments at varying strain conditions as per ASTM standard G36 has been studied. The environments employed boiling solution of 45 wt.% of MgCl2 at 155 °C, for various strain conditions. The study reveals that the crack width increases with increase in strain level in Super 304H stainless steels.  相似文献   

9.
This paper discusses a program to develop austenitic stainless and ferritic (martensitic) steels for fusion applications. The service lifetime of the first wall and blanket component structures will have a major effect on the economic viability of fusion energy. These components will operate at elevated temperatures in a corrosive environment within a strong radiation field. Alloy systems under consideration for this application include high-strength Fe-Ni-Cr super-alloys and alloys based on niobium, vanadium and titanium. Much of the experimental research, however, is focussed on more conventional austenitic stainless steels and chromium-molybdenum martensitic grades to withstand the unique irradiation environment of a fusion reactor.  相似文献   

10.
综述了核级碳钢、低合金钢、不锈钢发生动态应变时效(DSA)的反常特征、影响因素及机制,讨论了DSA与高温高压水环境因素的交互作用对核电材料环境致裂的可能影响。指出了当前研究中存在的问题及进一步的研究方向。  相似文献   

11.
Stress corrosion cracking (SCC) induced by chlorides frequently causes problems in applications where standard austenitic stainless steels are being used. Often this problem can be solved by the use of duplex stainless steels. In this report the mechanisms for SCC have been surveyed, and the cause for the high SCC resistance of duplex stainless steels has been discussed and evaluation of test methods for SCC and how duplex stainless steels respond to them, as well as practical experience of duplex stainless steels. The study shows that no single mechanism can be attributed to the good resistance to SCC of duplex stainless steels. Probably a synergistic effect of electrochemical and/or mechanical effects is responsible for the good performance. Test methods for SCC often give relatively good correspondence with real applications, but ranking is often doubtful, and comparisons of different material types should be made with caution. Numerous cases with SCC on standard austenitic stainless steels have been solved by the use of duplex stainless steels.  相似文献   

12.
Since publication of ANSI/NACE MR0175/ISO 15156 in 2003 there has been much debate on the performance of austenitic stainless steels in oil and gas production environments, with researchers recommending relaxation of the ISO 15156 restrictions for this material. This paper describes a recent austenitic stainless steel stress corrosion cracking failure and discusses its implications for the current restrictions of the ISO standard and recently proposed relaxations of these restrictions.  相似文献   

13.
连多硫酸溶液中奥氏体不锈钢的应力腐蚀开裂   总被引:1,自引:0,他引:1  
评述了奥氏体不锈钢在连多硫酸溶液中的应力腐蚀开裂叙述环境、钢中碳含量、热处理、应力等因素的作用.讨论防止应力腐蚀计裂的措施  相似文献   

14.
用恒载荷和恒位移试样分别研究了预蠕变对奥氏体不锈钢在成膜(42%MgCl_2)和不成膜(0.5mol/L HCl+0.5mol/L NaCl)溶液,以及黄铜在氨水溶液中应力腐蚀的影响结果表明,如用恒载荷试样,则无论是不锈钢还是黄铜,预蠕变对应力腐蚀断裂时间和门槛值均没有影响;如用恒位移试样,则预蠕变能使不锈钢和黄铜应力腐蚀门槛值成倍提高黄铜在氨水中加载阴极保护足够长时间后能抑制随后开路条件下的应力腐蚀,这归因于阴极极化改变溶液成分和pH值,而不是预蠕变的影响  相似文献   

15.
The corrosion fatigue crack growth behaviour of different wrought low-carbon and stabilised austenitic stainless steels was characterised under simulated boiling water and primary pressurised water reactor conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens in the temperature range from 70 to 320 °C.The major parameter effects and critical conjoint threshold conditions, which result in relevant environmental acceleration of fatigue crack growth are discussed and summarised. Furthermore, the observed corrosion fatigue behaviour is compared with the corresponding (corrosion) fatigue curves in the ASME and JSME boiler and pressure vessel code or open literature and conclusions with regard to their adequacy and conservatism are given.  相似文献   

16.
Stress corrosion cracking of austenitic chromium-nickel stainless steels at ambient temperature For the chloride-induced SCC with transgranular crack path in austenitic 18Cr10Ni stainless steel, a critical temperature between 45 and 50°C exists. This critical temperature, however, is valid only for the passive state of the steel in nearly neutral, chloride-containing aqueous environments. In the active state, SCC with transgranular crack mode can occur at temperatures down to ambient temperature. The active state is caused by highly acidic, high-chloride containing aqueous corrosive media. Adherent aqueous films with these properties can grow on the surface of structural components inside swimming-pools when the water is disinfected by addition of chlorine. Under these conditions, failure of austenitic CrNi and CrNiMo stainless steels by SCC with transgranular crack path at ambient temperature is possible and actually occurred. SCC with preferentially intergranular crack path can also occur at ambient temperature when austenitic stainless steels with a sensitized microstructure are used. Under these conditions, the corrosion attack is caused by non-specific aggressive environments, e.g., adherent aqueous films not containing chloride ions. The crack mode, intergranular or mixed, depends on the stress level.  相似文献   

17.
不锈钢应力腐蚀开裂综述   总被引:1,自引:0,他引:1  
应力腐蚀开裂一直以来是不锈钢领域的重要研究课题,也是许多行业亟需解决的工程问题。应力腐蚀开裂是材料、环境和应力三者相互作用的结果,由于其复杂性,目前人们对不锈钢发生应力腐蚀开裂的机理尚存在许多不同的见解,但是经过近一个世纪的研究,从材料选择、环境控制等方面入手,预防不锈钢发生应力腐蚀是能够达到的。综述了应力腐蚀开裂的特征、机理和三个影响因素(应力、材料和环境)。对应力腐蚀的阳极溶解机理和氢致开裂机理进行了概述,阐述并探讨了不锈钢应力腐蚀开裂的滑移溶解机理、氧化膜开裂机理以及氢致开裂机理。归纳了组织结构对不锈钢应力腐蚀的影响,分析了材料成分如(Ni、Mo和N)的添加与应力腐蚀敏感性的关系,总结了环境因素在应力腐蚀中的作用,对特定介质中不锈钢的应力腐蚀规律进行了归纳,并探讨了温度变化对不锈钢应力腐蚀的影响。介绍了近年来关于控制不锈钢应力腐蚀开裂方法的研究进展,如晶界工程、细化晶粒以及涂层等。最后展望了不锈钢应力腐蚀开裂未来的研究方向。  相似文献   

18.
Stress corrosion cracking (SCC) of stainless steels and nickel alloys in pressurised water reactors (PWR) has been studied for many years but the mechanism at atomic scale is still under debate. The purpose of this paper is to use atomistic calculations, molecular statics (MS) to describe the sequence of phenomena occurring at the crack tip of an SCC fracture. MS simulations with EAM potentials have been carried out on Ni bicrystals containing hydrogen. The calculations show that compression force applied on the crack lips with H at the GB causes brittle rupture. A theoretical model of SCC cracking has been proposed which fits particularly SCC of irradiated stainless steels (IASCC).  相似文献   

19.
钝化膜应力导致不锈钢应力腐蚀   总被引:2,自引:0,他引:2  
用恒位移载台,在透射电镜(TEM)中原位观察应力前后裂前方位错组态的变化以及微裂纹的形核和扩展,结果有明,310不锈钢在沸腾的25%MgCl2水溶液中应力腐蚀时腐蚀过程能促进位错发射,增殖和运动,当腐蚀促进的位错发射和运动达到临界状态时,应力腐蚀裂纹形核和扩展,测量表明,304不锈钢在沸腾MgCl2中自然腐蚀时表面钝化膜会产生一个附加拉应力,它可能是腐蚀促进位错发射和运动的原因。  相似文献   

20.
Corrosion fatigue under the load of low frequency and bigh mean stress has been generallydefined as stress corrosion fatigue(SCF).It is a specific failure process due to the inter-action between stress corrosion cracking(SCC) and corrsion fatigue(CF),the effectsof which on fracture characteristics,including crack initiation and propagation.servicelife and cracking mode have not been investigated systematically.The purpose of this pa-per was to study the environment-sensitive fracture behaviour of OCr18Ni9Ti austeniticstainless steel under the load of different fiequencies and high mean stress in boilingMgCl_2 solution.The interaction between SCC and CF would be emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号