首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
研究基于取样光栅的DFB激光器阵列,讨论取样光栅对波长控制的原理以及取样光栅的实现方法,并给出实验结果,实验结果表明,取样光栅可等效地实现高波长精度的DFB激光器阵列。  相似文献   

2.
阚强  赵玲娟  周帆  王宝军  王圩 《半导体学报》2005,26(z1):189-191
制作了取样光栅DFB激光器,比较研究了三种取样光栅的制备工艺,测试得到的取样光栅DFB激光器梳装光谱和理论计算大致吻合.  相似文献   

3.
制作了取样光栅DFB激光器,比较研究了三种取样光栅的制备工艺,测试得到的取样光栅DFB激光器梳装光谱和理论计算大致吻合.  相似文献   

4.
阚强  赵玲娟  周帆  王宝军  王圩 《半导体学报》2005,26(13):189-191
制作了取样光栅DFB激光器,比较研究了三种取样光栅的制备工艺,测试得到的取样光栅DFB激光器梳装光谱和理论计算大致吻合.  相似文献   

5.
随着智能感知技术的快速发展,高功率、窄线宽的半导体激光光源成为研究热点。通过在边发射半导体激光器件表面引入高阶曲线光栅,设计了一种独特的非稳谐振腔结构,可实现高功率和窄线宽。采用紫外光刻和电感耦合等离子体(ICP)刻蚀技术,制备了周期为6.09μm、占空比为0.66、刻蚀深度为500 nm的曲线光栅。在室温条件下,测得腔长为2 mm的器件的阈值电流为220 mA,连续输出功率为1.48 W,斜率效率为0.63 W/A。比较了法布里-珀罗激光器、直线光栅分布式反馈(DFB)激光器和曲线光栅DFB激光器的光谱,结果表明,曲线光栅对半导体激光器的模式选择起到了关键作用,有利于实现高功率DFB激光器的窄线宽单模输出。该器件具有制作工艺相对简单、性能优异、可靠性高等特点,具有广阔的应用前景。  相似文献   

6.
郭瑜  杜韦慷  李威  王颖颖  倪屹 《激光与红外》2018,48(9):1160-1165
为了实现DFB激光器阵列的智能化控制,提出了一种智能化、高精度、数字控制的驱动电路设计方案。该系统以单片机和FPGA为主要控制芯片,具有体积小、效率高、无冲击、开关保护等特点。DFB激光器阵列的输出可以由外部可调信号控制。该系统将模拟控制模型转化为数字控制模型,提高了驱动电路的性能。该系统能够实时监测DFB激光器阵列的温度和电流。电流的输出精度可以达到±0.1 mA,保证DFB激光器阵列稳定可靠地工作。该驱动电路有利于DFB激光器阵列的灵活使用。  相似文献   

7.
通过将二级光栅直接刻在脊形波导AlGaInAs/AlGaAs DFB激光器的无铝光波导层上,实现了波长约为820nm,单面功率为30mW的单纵模激光器.由于采用无铝光栅,保证了二次外延质量,从而得到较好的器件性能.激光器的阈值电流为57mA,斜率效率约为0.32mW/mA.  相似文献   

8.
采用变脊宽设计并制作了4通道DFB激光器阵列与多模干涉耦合器(MMI)的单片集成器件。在25摄氏度的测试温度下,阵列中各激光器的阈值电流为30-35mA,注入电流100mA 时的平均出光功率为1.5mW.器件总长度为1900um ,出射波长处于1550nm波段,边模抑制比大于40dB,4通道可实现单独或同时工作.  相似文献   

9.
分布反馈(DFB)光栅的制作是半导体激光器芯片的关键工艺,通过纳米压印技术在InP基片表面涂覆的光刻胶上压印出DFB光栅图形,并分别通过湿法腐蚀和干法刻蚀技术将光栅图形转移到InP基片上。所制作的DFB光栅周期为240nm(对应于1 550nm波长的DFB激光器),光栅中间具有λ/4相移结构。采用纳米压印技术制作的DFB光栅相对于通常双光束干涉法制作的光栅具有更好的均匀性以及更低的线条粗糙度,而且解决了双光束干涉法无法制作非均匀光栅的技术难题。相对于电子束直写光刻法,采用纳米压印技术制作DFB光栅具有快速与低成本的优势。采用纳米压印技术在InP基片上成功制作具有相移结构的DFB光栅,为进一步进行低成本高性能的半导体激光器芯片的制作奠定了良好基础。  相似文献   

10.
为了提高808 nm激光器对固体激光器的泵浦效率,对其波长稳定性进行了研究。阐述了光栅设计的理论基础。将纳米压印、干法刻蚀及湿法腐蚀工艺相结合,制备了含有一阶光栅的808 nm分布反馈(DFB)激光器阵列。在准连续条件(脉宽为200μs,频率为20 Hz)下对所制备的激光器进行性能测试。测试结果表明:所制备的808 nm DFB激光器阵列的发射波长随温度的漂移系数为0.06 nm/℃,温度锁定范围可达70℃(-10~60℃),随电流的漂移系数为0.006 nm/A。  相似文献   

11.
A complex-coupled DFB Laser with sampled grating has been designed and fabricated. The key concepts of the approach are to utilize the +1st order reflection of the sampled grating for laser single mode operation, and use a conventional holographic exposure combined with the usual photolithography to fabricate the sampled grating. The typical threshold current of the sampled grating based DFB laser is 25mA, and the optical output is about 10mW at the injected current of 100mA. The lasing wavelength of the device is 1.5385μm, which is the +1st order wavelength of the sampled grating.  相似文献   

12.
A complex-coupled DFB laser with sampled grating has been designed and fabricated. The method uses the + 1 st order reflection of the sampled grating for laser single-mode operation. The typical threshold current of the sampled grating based DFB laser is 25 mA, and the optical output is about 10 mW at the injected current of 100 mA. The lasing wavelength of the device is 1.5385μm, which is the +1 st order wavelength of the sampled grating.  相似文献   

13.
We discuss the design, fabrication, and performance of experimental multiwavelength laser array transmitters that have been used in the reconfigurable optical network testbed for the Optical Network Technology Consortium (ONTC). The experimental four-node multiwavelength network testbed is SONET/ATM compatible. It has employed multiwavelength DFB laser arrays with 4 nm wavelength spacing for the first time. The testbed has demonstrated that multiwavelength DFB laser arrays are indeed practical and reproducible. For the DFB laser arrays used in such a network the precise wavelength spacing in the array and the absolute wavelength control are the most challenging tasks. We have obtained wavelength accuracy better than ±0.35 nm for all lasers, with some registered to better than ±0.2 nm. We have also studied the array yield of our devices and used wavelength redundancy to improve the array yield. Coupling efficiencies between -2.1 to -4.5 dB for each wavelength channel have been obtained. It is achieved by using specially designed lensed fiber arrays placed on a silicon V-grooved substrate to exactly match the laser spacing. The transmitter consisted of a multichip module containing a DFB laser array, an eight-channel driver array based on GaAs IC's, and associated RF circuitry  相似文献   

14.
We investigate the threshold currents of 1.3-μm bulk, 1.55-μm bulk, and 1.55-μm multi-quantum-well (MQW) distributed feedback (DFB) P-substrate partially inverted buried heterostructure (BH) laser diodes experimentally and theoretically. In spite of the larger internal loss of the 1.55-μm bulk laser diodes, the threshold current of the 1.55-μm bulk DFB P-substrate partially inverted BH laser diode is almost the same as that of the 1.3-μm bulk DFB P-substrate partially inverted BH laser diode. The experimentally obtained average threshold current of the 1.3-μm bulk DFB P-substrate partially inverted BH laser diodes is 17 mA and that of the 1.55 μm bulk DFB P-substrate partially inverted BH laser diodes is 16 mA. The calculated threshold current of the 1.3-μm bulk DFB laser diode is 15.3 mA and that of the 1.55-μm bulk DFB laser diode is 18.3 mA, which nearly agree with the calculated values, respectively. We have fabricated two types of five-well 1.55-μm InGaAs-InGaAsP MQW DFB P-substrate partially inverted BH laser diodes. One has barriers whose bandgap energy corresponds to 1.3 μm, and the other has barriers of which bandgap energy corresponds to 1.15 μm. The calculated threshold current of the MQW DFB laser diode with the barriers (λg =1.3 μm) is 8.5 mA, which nearly agrees with the experimentally obtained value of 10 mA. However, the calculated threshold current of the MQW DFB laser diode with the barriers (λg=1.15 μm) is 7.9 mA which greatly disagrees with the experimentally obtained value of 19 mA, which suggests that the valence band discontinuity between the well and the barrier severely prevents the uniform distribution of the injected holes among five wells  相似文献   

15.
A four-channel distributed-feedback (DFB) laser array integrated with four heating filaments has been fabricated for high-density wavelength-division-multiplexing systems. The DFB lasers have a threshold current of 4 mA at room temperature. By changing the power in the heater, the wavelength of each laser can be continuously tuned by as much as 5 nm. Therefore, a tunable wavelength spacing anywhere from 1 nm to 2 nm can be achieved. Each laser can operate at 10 Gb/s. However, the bias current has to be increased to avoid the degradation of the eye pattern as the wavelength is thermally tuned over 2 nm. An electric crosstalk of 0.6 dB is measured when two adjacent lasers are modulated at 10 Gb/s simultaneously  相似文献   

16.
We report a low-cost manufacturing approach for fabricating monolithic multi-wavelength sources for dense wavelength division multiplexing(DWDM)systems that offers high yield and eliminates crystal regrowth and selective area epitaxy steps that are essential in traditional fabrication methods.The source integrates an array of distributed feedback(DFB)lasers with a passive coupler and semiconductor optical amplifier(SOA).Ridge waveguide lasers with sampled Bragg side wall gratings have been integrated using quantum well intermixing to achieve a fully functional four-channel DWDM source with 0.8 nm wavelength spacing and residual errors<0.13 nm.The output power from the SOA is>10 mW per channel making the source suitable for use in passive optical networks(PONs).We have also investigated using multisection phase-shifted sampled gratings to both increase the effective grating coupling coefficient and precisely control the channel lasing wavelength spacing.An 8-channel DFB laser array with 100 GHz channel spacing was demonstrated using a sampled grating with twoπ-phase-shifted sections in each sampling period.The entire array was fabricated by only a single step of electron beam lithography.  相似文献   

17.
通过将二级光栅直接刻在脊形波导AlGaInAs/AlGaAs DFB激光器的无铝光波导层上,实现了波长约为820nm,单面功率为30mW的单纵模激光器.由于采用无铝光栅,保证了二次外延质量,从而得到较好的器件性能.激光器的阈值电流为57mA,斜率效率约为0.32mW/mA.  相似文献   

18.
A four-channel integrated 1.55- mu m multielectrode distributed-feedback (DFB) laser array was fabricated using the metallorganic vapor-phase deposition/liquid-phase epitaxy (MOVPE/LPE) hybrid method. Simultaneous single-longitudinal mode operation was achieved in each multielectrode DFB laser on a single chip. Utilizing the frequency tunability of multielectrode DFB lasers, optical frequency spacings were controlled and set to within a few gigahertz. The drift of frequency spacings due to temperature fluctuation was in the range of +or-50 MHz for temperature control of +or-0.1 degrees .<>  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号