首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anatase and rutile TiO2 were used for preparation of the TiO2 supported Pd and Pd–Ag catalysts for selective hydrogenation of acetylene. It was found that Pd/TiO2-anatase exhibited higher acetylene conversion and ethylene selectivity than rutile TiO2 supported ones. However, addition of Ag to Pd/TiO2-anatase catalyst resulted in lower ethylene selectivity while that of Pd/TiO2-rutile increased. It is suggested that Ag addition suppressed the beneficial effect of the Ti3+ sites presented on the anatase TiO2 during selective acetylene hydrogenation whereas without Ti3+, Ag promoted ethylene selectivity by blocking sites for over-hydrogenation of ethylene to ethane.  相似文献   

2.
Hydrogenation of acetylene has been investigated on Au/TiO2, Pd/TiO2 and Au-Pd/TiO2 catalysts at high acetylene conversion levels. The Au/TiO2 catalyst (avg. particle size: 4.6 nm) synthesized by the temperature-programmed reduction-oxidation of an Au-phosphine complex on TiO2 showed a remarkably high selectivity to ethylene formation even at 100% acetylene conversion. Au/TiO2 prepared by the conventional incipient wet impregnation method (avg. particle size: 30 nm), on the other hand, showed negligible activity for acetylene hydrogenation. Although the Au catalysts showed a high selectivity for ethylene, the acetylene conversion activity and catalyst stability were inferior to the Pd-based catalysts. Au-Pd catalysts prepared by the redox method showed high acetylene conversions as well as high selectivity for ethylene. Interestingly Au-Pd catalysts prepared by depositing Pd via the incipient wetness method on Au/TiO2 showed very poor selectivity (comparable to mono-metallic Pd catalysts) for ethylene. High-resolution transmission electron microscopy (TEM) studies coupled with energy dispersive X-ray spectroscopy (EDS) showed that while the redox method produced bimetallic Au-Pd catalysts, the latter method produced individual Pd and Au particles on the support.  相似文献   

3.
Galvanic replacement, co-impregnation and sequential impregnation have been employed to prepare Pd-Cu bimetallic catalysts with less than 1 wt-% Cu and ca. 0.03 wt-% Pd for selective hydrogenation of acetylene in excess ethylene. High angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) and H2 chemisorption results confirmed that Pd-Cu single-atom alloy structures were constructed in all three bimetallic catalysts. Catalytic tests indicated that when the conversion of acetylene was above 99%, the selectivity of ethylene of these three single atom alloy catalysts was still more than 73%. Furthermore, the single atom alloy catalyst prepared by sequential incipient wetness impregnation was found to have the best stability among the three procedures used.  相似文献   

4.
Ethylene is an important feedstock for various industrial processes, particularly in the polymer industry. Unfortunately, during naphtha cracking to produce ethylene, there are instances of acetylene presence in the product stream, which poisons the Ziegler–Natta polymerization catalysts. Thus, appropriate process modification, optimization, and in particular, catalyst design are essential to ensure the production of highly pure ethylene that is suitable as a feedstock in polymerization reactions. Accordingly, carefully selected process parameters and the application of various catalyst systems have been optimized for this purpose. This review provides a holistic view of the recent reports on the selective hydrogenation of acetylene. Previously published reviews were limited to Pd catalysts. However, effective new metal and non-metal catalysts have been explored for selective acetylene hydrogenation. Updates on this recent progress and more comprehensive computational studies that are now available for the reaction are described herein. In addition to the favored Pd catalysts, other catalyst systems including mono, bimetallic, trimetallic, and ionic catalysts are presented. The specific role(s) that each process parameter plays to achieve high acetylene conversion and ethylene selectivity is discussed. Attempts have been made to elucidate the possible catalyst deactivation mechanisms involved in the reaction. Extensive reports suggest that acetylene adsorption occurs through an active single-site mechanism rather than via dual active sites. An increase in the reaction temperature affords high acetylene conversion and ethylene selectivity to obtain reactant streams free of ethylene. Conflicting findings to this trend have reported the presence of ethylene in the feed stream. This review will serve as a useful resource of condensed information for researchers in the field of acetylene-selective hydrogenation.  相似文献   

5.
车春霞  韩伟  唐瑜  梁玉龙  钱颖  谭都平 《工业催化》2014,22(10):791-793
国内采用碳二前加氢工艺的乙烯装置总产能达11.74 Mt·a-1,因此开展碳二前加氢催化剂的研究具有重要意义。采用分步浸渍法制备负载型Pd-Ag/α-Al2O3碳二前脱丙烷工艺前加氢催化剂,并与同类进口催化剂进行1 000 h对比评价。结果表明,Pd-Ag/α-Al2O3催化剂1 000 h乙炔转化率为91%,丙炔+丙二烯转化率为33%,乙烯选择性为55%,总体性能与进口催化剂相当。  相似文献   

6.
为了研究工艺条件对钯系催化剂选择性加氢性能的影响,制备Pd/Al_2O_3、Pd-Ag/Al_2O_3和Pd-Ag/Al_2O_3-KOH催化剂,并在微型催化剂评价装置上进行乙炔选择性加氢反应,考察了工艺条件(压力、空速)对催化剂性能的影响。结果表明,随着压力的升高,催化剂活性提高,乙烯选择性会下降;随着空速的提高,催化剂乙炔转化率先升高后降低,MAPD转化率迅速下降,乙烯选择性提高。  相似文献   

7.
乙炔加氢是乙烯工业中的重要精制反应。以α-Al2O3作为载体,采用分步等量浸渍法制备了不同Pd/Ag配比的加氢催化剂,使用N2物理吸附、XRD、ICP、XPS、TEM和CO化学吸附等手段表征催化剂的结构和组成,根据正交实验设计方案进行动力学实验,建立了微观反应动力学模型,并根据动力学模拟结果和动力学参数值的变化分析了Ag助剂含量对乙炔加氢反应动力学的影响。研究结果表明,以Pd-Ag催化剂上碳二加氢的DFT计算结果为基础参数来源,经过吸脱附步骤活化能的优化,微观反应动力学模型可以很好地模拟不同Pd/Ag配比催化剂上的乙炔加氢反应动力学结果;在所研究范围内,各催化剂上加氢反应的表面最丰物种皆为C2H4*,速率控制步骤为乙烯基加氢,不会随着Ag含量的不同发生变化;但是Ag含量的增加显著降低了氢气脱附活化能,提高了乙烯的选择性,这可能与Ag含量的提高增加了催化剂表面Ag和Pd之间的电子转移现象有关。  相似文献   

8.
The performance of Ag-promoted Pd/Al2O3 catalysts, which were prepared by the selective deposition of Ag onto Pd using a surface redox (SR) method, during acetylene hydrogenation was compared with that of catalysts prepared by impregnation. The Pd surface was more effectively modified with Ag added by SR, even when small amounts of Ag were added. The catalyst prepared by SR showed a higher ethylene selectivity than the one prepared by impregnation, because SR allowed both the preferential deposition of Ag on the low-coordination sites of Pd and a greater electronic modification of Pd by Ag.  相似文献   

9.
采用等体积浸渍法制备了Pd、Cu-Pd改性的S-1催化剂,利用介质阻挡放电(DBD)等离子体反应器研究了甲烷无氧转化制低碳烯烃(C2~C4=)的性能,重点关注了乙烯的产量。探讨了Ar的添加和特定输入能量(SIE)对甲烷转化率以及产物分布的影响。实验结果表明,等离子体与催化剂协同催化与仅使用等离子体相比性能更优异,使乙烯选择性提高了3.1倍,C2~C4=的选择性提高了2.7倍;与S-1相比,Pd/S-1具有更高的乙烯选择性,这是因为在S-1上负载金属Pd有助于乙炔原位加氢生成乙烯;适宜的Pd负载量有利于提高烯烃选择性,而过高的Pd负载量倾向于不饱和烃的连续加氢,导致了烷烃的生成;与单金属Pd改性相比,Cu-Pd双金属改性抑制了乙烯的进一步加氢,提高了乙烯的选择性。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高倍透射电子显微镜(HRTEM)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)对催化剂进行了表征分析。结果表明,Cu的加入使自身电子向Pd转移,增加了Pd电子密度;另外,Cu的存在提高了Pd的分散性。以2Cu-0.1Pd/S-1为催化剂时可以得到更优异的反应性能。  相似文献   

10.
Supported PdAg bimetallic catalysts were evaluated for the selective hydrogenation of acetylene in the presence of ethylene. The effects of different zeolite structures and cations were investigated using flow reactor studies, with K+-β-zeolite supported PdAg showing the lowest activity but highest selectivity comparing to the γ-Al2O3 support and other alkaline metal exchanged β-zeolite supports. The K+ promoter effect on γ-Al2O3 was also tested, which showed that adding K+ to γ-Al2O3 increased activity and selectivity. Bimetallic catalysts consisting of Pd and a Group IB metal were also compared. It was found that the PdAg bimetallic catalyst had similar activity but better selectivity comparing to PdCu, while the PdAu catalyst showed the highest activity but lowest selectivity.  相似文献   

11.
Pd L3 near‐edge absorption measurements (XANES) were performed on four commercial acetylene hydrogenation catalyst samples, with and without the Ag promoter. The Pd L3 edge XANES spectra showed that the Ag‐promoted catalysts have relatively weaker absorption peaks and they follow the same order as the relative commercial performances of the four catalysts studied in terms of selectivity in ethylene purification, which indicates that there are increases in the Pd d‐band electron densities due to the addition of Ag. These results provide a reasonable explanation for the observed improvement in selectivity of the Ag‐promoted acetylene hydrogenation catalysts. The Ag L3 XANES spectra of the supported Pd–Ag catalysts indicate the absence of a white‐line feature which seems to suggest that the charge transferred from Ag to Pd may not be the d‐type. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Au, Ag and Au–Ag catalysts on different supports of alumina, titania and ceria were studied for their catalytic activity of ethylene oxidation reactions. An addition of an appropriate amount of Au on Ag/Al2O3 catalyst was found to enhance the catalytic activity of the ethylene epoxidation reaction because Au acts as a diluting agent on the Ag surface creating new single silver sites which favor molecular oxygen adsorption. The Ag catalysts on both titania and ceria supports exhibited very poor catalytic activity toward the epoxidation reaction of ethylene, so pure Au catalysts on these two supports were investigated. The Au/TiO2 catalysts provided the highest selectivity of ethylene oxide with relatively low ethylene conversion whereas, the Au/CeO2 catalysts was shown to favor the total oxidation reaction over the epoxidation reaction at very low temperatures. In comparisons among the studied catalysts, the bimetallic Au–Ag/Al2O3 catalyst is the best candidate for the ethylene epoxidation. The catalytic activity of the gold catalysts was found to depend on the support material and catalyst preparation method which govern the Au particle size and the interaction between the Au particles and the support.  相似文献   

13.
在乙烷裂解配套制乙烯选择加氢的工艺条件下,考察载体焙烧温度、助剂Ag含量、溶液pH值、CO含量及空速对等体积浸渍法制备的Pd-Ag/α-Al2O3催化剂性能的影响。结果表明,载体焙烧温度的增加,有助于提高催化剂活性;催化剂Ag含量增加,反应温度变化不大,选择性及抗结焦性能增加;不同溶液pH制备催化剂,选择加氢性能差异不大,但溶液的酸性过高会降低催化剂的抗结焦性能;随着CO的升高,乙炔转化率降低,乙烯选择性先增高后降低,为保证催化剂选择性,原料中的CO最好保持在(700~1 600) μL·L-1;随着空速的升高,乙炔转化率降低,乙烯选择性增加。  相似文献   

14.
采用硼氢化钠一步还原法,首先得到PdAg和PdAu双金属合金纳米颗粒.利用XRD、TEM以及紫外可见光光谱技术对其进行了表征分析.结果表明,PdAg和PdAu两种合金都具有纳米颗粒分散均匀且颗粒尺寸小等优点.随后采用胶体沉积法将两种合金均匀地负载到Al2O3上,成功获得PdAg/Al2O3和PdAu/Al2O3两种金属纳米催化剂.在邻氯硝基苯加氢反应中,与Pd/Al2O3纳米催化剂相比,PdAg/Al2O3催化剂显示出95.5%的选择性,而PdAu/AI2O3催化剂的选择性高达98.7%,这可能归因于Pd与Ag或Au金属间的协同效应.  相似文献   

15.
张齐  戴伟  穆玮  于海波 《化工学报》2011,62(1):71-77
以一氧化碳和乙炔为探针分子,采用原位红外光谱技术研究了Pd-Ag/ Al2O3和Pd/ Al2O3催化剂上乙炔加氢反应以及催化剂本身的表面形态,动态考察了乙炔加氢的气相反应行为、CO吸附以及催化剂表面吸附物种的变化。结果表明,在Pd-Ag/ Al2O3催化体系中,由于Ag的加入而受到几何效应和电子效应的共同影响,引起了催化剂表面形态的改变从而改变了催化剂的性能。另外,乙炔加氢反应会导致钯催化剂表面形成由长分子链的饱和烃组成的碳氢化合物层,该碳氢化合物层有可能是加氢反应形成的绿油。  相似文献   

16.
介绍了乙炔选择性加氢制乙烯催化剂的研究和开发进展。针对负载型纳米金催化剂的发展趋势及其对乙炔加氢反应产物中乙烯的独特选择性,重点对比单金属纳米金催化剂及合金型催化剂的催化性能差异,发现合金型纳米金催化剂具有较高的乙炔转化率和稳定性。影响催化性能的主要因素有纳米粒子的大小及活性组分之间的相互协同作用。分析积炭的形成以及导致催化剂失活的原理。展望低温条件下具有高转化率与高稳定性的合金型纳米金催化剂的应用前景。  相似文献   

17.
Transition-metal oxides added to Pd/SiO2 improve significantly the activity and the ethylene selectivity of the catalyst in acetylene hydrogenation, which is caused by the interaction between the oxides and the Pd surface similar to the case of the oxide-supported catalysts. It has been confirmed through experiments that metal oxides spread on and modify both geometrically and electronically the Pd surface after the catalyst is reduced at 500°C. Such a behavior of metal oxides in the catalyst is correlated well with their promotional effect on the catalyst performance. That is, the oxides on the Pd surface retard the sintering of the dispersed Pd particles, suppress the adsorption of ethylene in the multiply-bound mode, and facilitate the desorption of ethylene produced by acetylene hydrogenation. Among the three metal oxides examined in this study, Ti oxide is found to have the most promotional effect.  相似文献   

18.
Effects of Ni addition on the performance of Pd-Ag/Al2O3 catalysts in the selective hydrogenation of acetylene were investigated. Ni-added Pd-Ag catalysts showed higher conversions than Ni-free Pd-Ag catalyst under hydrogen-deficient reaction conditions, hydrogen/acetylene <2.0, due to the spillover of hydrogen from reduced Ni to Pd and the suppression of hydrogen penetration into the Pd bulk phase, which enriched the Pd surface with hydrogen. Ethylene selectivity was also increased by Ni addition because the amounts of surface hydrogen originating from the Pd bulk phase, which was responsible for the full hydrogenation of ethylene to ethane, were decreased due to the presence of Ni at the sub-surface of Pd-Ag particles. Added Ni also modified the geometric nature of the Pd surface by blocking large ensembles of Pd into isolated ones, which eventually improved ethylene selectivity.  相似文献   

19.
Size-controlled Pd nanoparticles (PdNPs) were synthesized in aqueous solution, using sodium car-boxymethyl cellulose as the stabilizer. Size-controlled PdNPs were supported onα-Al2O3 by the incipient wetness impregnation method. The PdNPs onα-Al2O3 support were in a narrow particle size distribution in the range of 1-6 nm. A series of PdNPs/α-Al2O3 catalysts were used for the selective hydrogenation of acetylene in ethylene-rich stream. The results show that PdNPs/α-Al2O3 catalyst with 0.03%(by mass) Pd loading is a very effective and sta-ble catalyst. With promoter Ag added, ethylene selectivity is increased from 41.0%to 63.8%at 100 &#176;C. Comparing with conventional Pd-Ag/α-Al2O3 catalyst, PdNPs-Ag/α-Al2O3 catalyst has better catalytic performance in acety-lene hydrogenation and shows good prospects for industrial application.  相似文献   

20.
Recent advances with Pd containing catalysts for the selective hydrogenation of acetylene are described. The overview classifies enhancement of catalytic properties for monometallic and bimetallic Pd catalysts. Activity/selectivity of Pd catalysts can be modified by controlling particle shape/morphology or immobilisation on a support which interacts strongly with Pd particles. In both cases enhanced ethylene selectivity is generally associated with modifying ethylene adsorption strength and/or changes to hydride formation. Inorganic and organic selectivity modifiers (i.e., species adsorbed onto Pd particle surface) have also been shown to enhance ethylene selectivity. Inorganic modifiers such as TiO2 change Pd ensemble size and modify ethylene adsorption strength whereas organic modifiers such as diphenylsulfide are thought to create a surface template effect which favours acetylene adsorption with respect to ethylene. A number of metals and synthetic approaches have been explored to prepare Pd bimetallic catalysts. Examples where enhanced selectivity is observed are generally associated with decreased Pd ensemble size and/or hindering of the ease with which an unselective hydride phase is formed for Pd. A final class of bimetallic catalysts are discussed where Pd is not thought to be the primary reaction site but merely acts as a site where hydrogen dissociation and spillover occurs onto a second metal (Cu or Au) where the reaction takes place more selectively.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号