首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 406 毫秒
1.
陈自然  李钢  赵建  田伟 《传感技术学报》2018,31(7):1061-1066
针对现有光栅信号细分技术对光栅输出原始信号波形质量要求较高的问题,本文利用运动过程中时间与空间的映射关系,建立一种利用时间基准测量空间的新方法.通过光栅栅距触发采样时间建立样本序列,在通过分析不同运动状态特性的基础上,研究采用组合预测算法,提出一种光栅信号自适应细分新方法,实验结果表明此算法能实现圆光栅栅距内100倍细分,细分误差为±0.56″,满足实验所需的实时性和细分精度的要求,实现光栅信号细分.此细分方法充分利用光栅本身的制造精度,与光栅输出信号正弦性无关,在精密测量领域具有重要应用价值.  相似文献   

2.
在高精度测量中,为了提高光栅细分精度,采用了一种基于FPGA的光栅信号细分及辨向方法。首先用Matlab分析读数头输出的两路原始信号和经过滤波且滤除直流分量的信号特点,并根据处理后的波形构造细分算法,既验证细分算法实现1024细分的可行性,也验证硬件电路实现细分算法的可行性。然后在Matlab对光栅信号的算法分析基础上,设计了一种基于幅值采样细分方法的电路,实现对光栅信号进行细分和辨向。细分硬件电路主要包括8细分电路和精细分电路,8细分电路主要对每个信号的一个周期进行8细分,精细分电路主要是对每1/8周期的信号进行细分。测试结果表明,该细分电路实现了光栅的1024细分,达到了高倍细分目的。  相似文献   

3.
目前光栅莫尔条纹细分技术在数控机床、超精加工、精密仪器等领域得到了广泛的应用.考虑到光栅细分系统的精度、速度和抗干扰能力等多方面指标,提出了一种新的莫尔条纹细分技术,并通过CORDIC算法对不足一个周期的正弦信号进行细分,直接提取相位信息.光栅细分系统将CORDIC算法应用于FPGA中,能够对莫尔信号进行很好的细分处理,满足高精度的要求,实验结果验证了其正确性及可行性.  相似文献   

4.
《传感器世界》2005,11(7):41-41
传动链动态测试系统采用“传动测试及精密定位技术”,对传动链传动误差进行动态检测。以位移检测为基本检测对象,应用嵌入式微机技术和高速A/D变换技术,采用测量细分方法对正弦波光栅传感器的信号进行了200倍以上细分和辩向,并实时地跟踪光栅莫尔信号幅值的变化,最大限度地消除了莫尔信号幅值变化所产生的细分误差。  相似文献   

5.
基于DSP的光栅分度盘及其光栅信号精细分   总被引:1,自引:0,他引:1  
钱伟康  鲁湛 《测控技术》2012,31(10):33-36
对提高光栅的细分准确度进行了研究,提出了一种正切与余切相结合的方法.针对实际光栅信号的不稳定性,利用光栅发讯头输出正切、余切信号峰峰值与直流电平的漂移,自动修正反正切与反余切的查找表格.该方法应用于精密倾光学分读盘测量系统,使细分误差仅与光栅信号第一个采样值和最后一个采样值的精度有关,与测量过程中的光栅信号采样值的误差无关,同时采用DSP处理采样数据,速度更快,并成功应用于光栅分读盘系统,精度为2″.  相似文献   

6.
介绍一种基于FPGA的精密离心机光栅信号细分系统。说明了光栅信号的产生过程和基本处理方法,提出了一种综合EDA技术与光栅莫尔条纹电子学细分技术的设计方案。通过VerilogHDL实现该系统的主要设计,并利用ISE软件进行了仿真试验。试验表明,该系统具有捕捉速度快、跟踪精度高、相位误差小、成本低廉等特点。  相似文献   

7.
光栅尺作为高精度位置测量仪器,其分辨率受制于超精密的空间刻划技术,测量精度急需通过电子学细分法来提高.为此,提出了"时空转换"的思想:借助于载波调制理论,引入了恒定的时空当量,将对空间位移的测量转换为对信号瞬时周期的测量.首先,进行了时空转换法的数学推导,探究了正弦波光栅尺位移的测定和移动方向的判别方法;然后,在DSP开发平台下,搭建出基于时空转换法的正弦波光栅尺位移测量系统;最后,从实验数据以及光栅信号的残余直流电平、幅值不均衡、相位不正交等方面进行了误差分析.实验表明:栅距为8 mm的正弦波光栅尺,在时空转换法下,平均测量误差为± 0.258 1μm ,兼顾了细分与辨向.  相似文献   

8.
在地震勘探系统中,随着数据记录系统动态范围的突破,地震检波器的动态范围已不能满足系统的要求,提高检波器的精度和动态范围变成地震勘探技术研究的关键.光栅数字地震检波器的研制成功,提高了检波器的精度和动态范围.通过对光栅传感器机理的深入分析,采用5细分专用芯片为核心的细分电路,成功实现了光栅脉冲信号的20倍细分技术.在采用100线计量光栅的情况下,使检波器分辨率达到0.000 5 mm,动态范围达到75dB.并采用PIC单片机系统完成了振动信号的再现.该方法将有助于光栅数字地震检波器的性能完善,为实现高精度地震勘探技术奠定基础.  相似文献   

9.
在光栅测量系统中,为了提高光栅传感器的测量精度需要对传感器输出的莫尔条纹信号进行细分,但高斯白噪声和脉冲型噪声的存在会影响细分精度。减小噪声干扰的方法一般采用中值和平均滤波,而该方法只适用在静态测量中,对于时变的莫尔条纹信号实现困难。由多项式预测滤波器根据多个已测量的值,预测出当前的测量信号,预测的信号和实际测量信号经过中值滤波后输出,减小光栅测量系统的噪声。最后,通过应用实验验证了该方法的有效性。  相似文献   

10.
莫尔信号细分是光栅传感器应用的必要环节,幅值分割法是实现莫尔信号细分的重要手段.为减小信号质量对细分结果造成的影响,误差补偿成为细分实现过程中必不可少的单元.本文针对数字式幅值细分方法开展研究,针对ADC参数对光栅莫尔信号误差补偿和细分效果的影响进行分析,建立ADC参数与莫尔信号直流补偿、幅值补偿和细分倍数之间的量化模型,设计并开展了直流和幅值补偿效果实验.研究结果表明:不同位宽的ADC对莫尔信号误差补偿和细分效果的影响不同,在本文模型的基础上,ADC位宽应提高1 bit~2 bit.研究成果对于莫尔信号数字式幅值分割细分系统的工程实现具有一定的指导意义和参考价值.  相似文献   

11.
为了提高时栅位移传感器的测量精度,介绍了一种不通过提高时钟频率而提高时栅测量精度的方法一游标细分法.借鉴于游标卡尺对齐细分的测量方法,对时栅时钟脉冲进行二次细分,实现了高分辨率、高精度时间量的测量,避开了复杂的电子细分.为了验证该方法的有效性,搭建了一套实验平台,实践证明:采用游标细分方法后,时栅位移传感器的时钟插补脉冲在41.7 ps的高分辨率下,测量误差峰峰值为±1.4”,实现了更高精度的测量.  相似文献   

12.
在工业现场,角位移传感器校准受特殊条件的限制,很难用标准器进行密集误差采样来提高精度。针对该问题提出了一种稀疏误差采样及补偿方法。在分析时栅角位移传感器的感应信号的基础上,提出稀疏采样第1个对极内细分误差+对极点零位误差的测补方式,给出用激光干涉仪获取零位和细分误差的方法及采用稀疏采样的误差补偿模型进行补偿的具体过程。以72对极时栅角位移传感器为对象进行研究,实验结果表明:该方法充分剔除了零位误差且补偿了细分误差,在稀疏采样的条件下即可实现整周范围的有效补偿,大大提高了修正效率和测量精度,时栅传感器的精度达到2.69″。  相似文献   

13.
本文研究由位移传感用的光学扫描器、简单光学系统、栅距很大的粗线纹反射式光栅尺(λ=0.635mm)和信号处理电路等构成的新型精密位移测量系统。对光学扫描器作了简要介绍。阐述了该系统的工作原理、电路框图和动态鉴相细分电路。实验结果表明,本系统测量误差小于±0.01mm,分辨率为lμm。与国内现有位移测量系统相比,新系统具有工作间隙特别大(15mm左右),光栅尺不用密封,耐现场污染,容易在车间推广使用等优点。  相似文献   

14.
光栅地震检波器是基于光栅检测技术设计的一种新型数字传感器,基于单片机的光栅地震检波器信号处理速度较慢,现场可编程门阵列FPGA时钟频率高,内部延时小,硬件资源丰富,在控制数据采集、转换等方面有着单片机和DSP所无法比拟的优势。为了提高光栅地震检波器的测量精度和分辨力,该文进行了基于FPGA的光栅地震检波器信号处理研究,并将软件细分原则应用于信号处理系统中。该系统基于硬件描述语言Verilog和PicoBlaze软核进行设计,在有效地减小电路板面积的同时,可实现数据的快速采集和高精度测量。  相似文献   

15.
设计了一种基于单片STM32F4芯片的时栅位移传感器信号处理系统,将驱动电源、信号采样以及数据处理与误差补偿集成在一片芯片中完成,采用数字频率直接合成(DDS)技术进行激励源的设计,利用输入捕获方式进行高频时钟脉冲插补来采集测量信号,由芯片集成的单周期DSP指令部件完成数据计算,并采用傅氏级数谐波修正技术来进行误差修正。实验表明:采用该系统后,72对极时栅误差峰峰值为3.29”,在保证精度的同时实现了时栅信号处理系统的集成化、小型化,降低了生产成本。  相似文献   

16.
针对解决大量程纳米位移精度测量难度大的问题,提出了新型纳米时栅传感器。就大量程、高精度位移传感器的亚微米精度加工而言,宏观尺度范围内周期性结构单元一致性制造是保证位移传感器可靠性和高精度测量的关键所在。对上述提出的问题,采用高精度自动拼接曝光技术加工并实现了大量程标尺的图形转移,结合微纳加工方式实现时栅传感器亚微米级精度的制造。通过实验验证所加工出的样机能够达到预期目标,并且测量误差峰值在500 nm以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号