首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Here first a 2D dual‐metal (Co/Zn) and leaf‐like zeolitic imidazolate framework (ZIF‐L)‐pyrolysis approach is reported for the low‐cost and facile preparation of Co nanoparticles encapsulated into nitrogen‐doped carbon nanotubes (Co‐N‐CNTs). Importantly, the reasonable Co/Zn molar ratio in the ZIF‐L is the key to the emergence of the encapsulated microstructure. Specifically, high‐dispersed cobalt nanoparticles are fully encapsulated in the tips of N‐CNTs, leading to the full formation of highly active Co–N–C moieties for oxygen reduction and evolution reactions (ORR and OER). As a result, the obtained Co‐N‐CNTs present superior electrocatalytic activity and stability toward ORR and OER over the commercial Pt/C and IrO2 as well as most reported metal‐organic‐framework‐derived catalysts, respectively. Remarkably, as bifunctional air electrodes of the Zn–air battery, it also shows extraordinary charge–discharge performance. The present concept will provide a guideline for screening novel 2D metal‐organic frameworks as precursors to synthesize advanced multifunctional nanomaterials for cross‐cutting applications.  相似文献   

2.
Designing a highly active electrocatalyst with optimal stability at low cost is must and non‐negotiable if large‐scale implementations of fuel cells are to be fully realized. Zeolitic‐imidazolate frameworks (ZIFs) offer rich platforms to design multifunctional materials due to their flexibility and ultrahigh surface area. Herein, an advanced Co–Nx/C nanorod array derived from 3D ZIF nanocrystals with superior electrocatalytic activity and stability toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) compared to commercial Pt/C and IrO2, respectively, is synthesized. Remarkably, as a bifunctional catalyst (Ej = 10 (OER) ? E1/2 (ORR) ≈ 0.65 V), it further displays high performance of Zn–air batteries with high cycling stability even at a high current density. Such supercatalytic properties are largely attributed to the synergistic effect of the chemical composition, high surface area, and abundant active sites of the nanorods. The activity origin is clarified through post oxygen reduction X‐ray photoelectron spectroscopy analysis and density functional theory studies. Undoubtedly, this approach opens a new avenue to strategically design highly active and performance‐oriented electrocatalytic materials for wider electrochemical energy applications.  相似文献   

3.
Discovering precious metal‐free electrocatalysts exhibiting high activity and stability toward both the oxygen reduction (ORR) and the oxygen evolution (OER) reactions remains one of the main challenges for the development of reversible oxygen electrodes in rechargeable metal–air batteries and reversible electrolyzer/fuel cell systems. Herein, a highly active OER catalyst, Fe0.3Ni0.7OX supported on oxygen‐functionalized multi‐walled carbon nanotubes, is substantially activated into a bifunctional ORR/OER catalyst by means of additional incorporation of MnOX. The carbon nanotube‐supported trimetallic (Mn‐Ni‐Fe) oxide catalyst achieves remarkably low ORR and OER overpotentials with a low reversible ORR/OER overvoltage of only 0.73 V, as well as selective reduction of O2 predominantly to OH?. It is shown by means of rotating disk electrode and rotating ring disk electrode voltammetry that the combination of earth‐abundant transition metal oxides leads to strong synergistic interactions modulating catalytic activity. The applicability of the prepared catalyst for reversible ORR/OER electrocatalysis is evaluated by means of a four‐electrode configuration cell assembly comprising an integrated two‐layer bifunctional ORR/OER electrode system with the individual layers dedicated for the ORR and the OER to prevent deactivation of the ORR activity as commonly observed in single‐layer bifunctional ORR/OER electrodes after OER polarization.  相似文献   

4.
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) along with hydrogen evolution reaction (HER) have been considered critical processes for electrochemical energy conversion and storage through metal‐air battery, fuel cell, and water electrolyzer technologies. Here, a new class of multifunctional electrocatalysts consisting of dominant metallic Ni or Co with small fraction of their oxides anchored onto nitrogen‐doped reduced graphene oxide (rGO) including Co‐CoO/N‐rGO and Ni‐NiO/N‐rGO are prepared via a pyrolysis of graphene oxide and cobalt or nickel salts. Ni‐NiO/N‐rGO shows the higher electrocatalytic activity for the OER in 0.1 m KOH with a low overpotential of 0.24 V at a current density of 10 mA cm?2, which is superior to that of the commercial IrO2. In addition, it exhibits remarkable activity for the HER, demonstrating a low overpotential of 0.16 V at a current density of 20 mA cm?2 in 1.0 m KOH. Apart from similar HER activity to the Ni‐based catalyst, Co‐CoO/N‐rGO displays the higher activity for the ORR, comparable to Pt/C in zinc‐air batteries. This work provides a new avenue for the development of multifunctional electrocatalysts with optimal catalytic activity by varying transition metals (Ni or Co) for these highly demanded electrochemical energy technologies.  相似文献   

5.
Development of highly efficient and low‐cost multifunctional electrocatalysts for the oxygen evolution reaction (OER), the oxygen reduction reaction (ORR), and the hydrogen evolution reaction is urgently required for energy storage and conversion applications, such as in Zn–air batteries and water splitting to replace very expansive noble metal catalysts. Here, the new core–shell NiFe@N‐graphite electrocatalysts with excellent electrocatalytic activity and stability toward OER and ORR are reported and the Ni0.5Fe0.5@N‐graphite electrocatalyst is applied as the air electrode in Zn–air batteries. The respective liquid Zn–air battery shows a large open‐circuit potential of 1.482 V and a small charge–discharge voltage gap of 0.12 V at 10 mA cm−2, together with excellent cycling stability even after 40 h at 20 mA cm−2. Interestingly, the all‐solid‐like Zn–air battery thus derived shows a highly desired mechanical flexibility, whereby little change is observed in the voltage when bent into different angles. Using the same Ni0.5Fe0.5@N‐graphite electrode, a self‐driven water‐splitting device, which is powered by two Zn–air batteries in‐series, is constructed. The present study opens a new opportunity for the rational design of metal@N‐graphite‐based catalysts of core–shell structures for electrochemical catalysts and renewable energy applications.  相似文献   

6.
Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes highly rely on the rational design and synthesis of high-performance electrocatalysts. Herein, comprehensive characterizations and density functional theory (DFT) calculations are combined to verify the important roles of the crystallinity and oxygen vacancy levels of Co(II) oxide (CoO) on ORR and OER activities. A facile and controllable vacuum-calcination strategy is utilized to convert Co(OH)2 into oxygen-defective amorphous-crystalline CoO (namely ODAC-CoO) nanosheets. With the carefully controlled crystallinity and oxygen vacancy levels, the optimal ODAC-CoO sample exhibits dramatically enhanced ORR and OER electrocatalytic activities compared with the pure crystalline CoO counterpart. The assembled liquid and quasi-solid-state Zn–air batteries with ODAC-CoO as cathode material achieve remarkable specific capacity, power density, and excellent cycling stability, outperforming the benchmark Pt/C + IrO2 catalysts. This study theoretically proposes and experimentally demonstrates that the simultaneous introduction of amorphous structures and oxygen vacancies could be an effective avenue towards high-performance electrocatalytic ORR and OER.  相似文献   

7.
Heteroatom doping plays a significant role in optimizing the catalytic performance of electrocatalysts. However, research on heteroatom doped electrocatalysts with abundant defects and well‐defined morphology remain a great challenge. Herein, a class of defect‐engineered nitrogen‐doped Co3O4 nanoparticles/nitrogen‐doped carbon framework (N‐Co3O4@NC) strongly coupled porous nanocubes, made using a zeolitic imidazolate framework‐67 via a controllable N‐doping strategy, is demonstrated for achieving remarkable oxygen evolution reaction (OER) catalysis. X‐ray photoelectron spectroscopy, X‐ray absorption fine structure, and electron spin resonance results clearly reveal the formation of a considerable amount of nitrogen dopants and oxygen vacancies in N‐Co3O4@NC. The defect engineering of N‐Co3O4@NC makes it exhibit an overpotential of only 266 mV to reach 10 mA cm?2, a low Tafel slope of 54.9 mV dec?1 and superior catalytic stability for OER, which is comparable to that of commercial RuO2. Density functional theory calculations indicate N‐doping could promote catalytic activity via improving electronic conductivity, accelerating reaction kinetics, and optimizing the adsorption energy for intermediates of OER. Interestingly, N‐Co3O4@NC also shows a superior oxygen reduction reaction activity, making it a bifunctional electrocatalyst for zinc–air batteries. The zinc–air battery with the N‐Co3O4@NC cathode demonstrates superior efficiency and durability, showing the feasibility of N‐Co3O4/NC in electrochemical energy devices.  相似文献   

8.
Cobalt sulfide materials have attracted enormous interest as low‐cost alternatives to noble‐metal catalysts capable of catalyzing both oxygen reduction and oxygen evolution reactions. Although recent advances have been achieved in the development of various cobalt sulfide composites to expedite their oxygen reduction reaction properties, to improve their poor oxygen evolution reaction (OER) activity is still challenging, which significantly limits their utilization. Here, the synthesis of Fe3O4‐decorated Co9S8 nanoparticles in situ grown on a reduced graphene oxide surface (Fe3O4@Co9S8/rGO) and the use of it as a remarkably active and stable OER catalyst are first reported. Loading of Fe3O4 on cobalt sulfide induces the formation of pure phase Co9S8 and highly improves the catalytic activity for OER. The composite exhibits superior OER performance with a small overpotential of 0.34 V at the current density of 10 mA cm?2 and high stability. It is believed that the electron transfer trend from Fe species to Co9S8 promotes the breaking of the Co–O bond in the stable configuration (Co–O–O superoxo group), attributing to the excellent catalytic activity. This development offers a new and effective cobalt sulfide‐based oxygen evolution electrocatalysts to replace the expensive commercial catalysts such as RuO2 or IrO2.  相似文献   

9.
Li–air batteries, characteristic of superhigh theoretical specific energy density, cost‐efficiency, and environment‐friendly merits, have aroused ever‐increasing attention. Nevertheless, relatively low Coulomb efficiency, severe potential hysteresis, and poor rate capability, which mainly result from sluggish oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) kinetics, as well as pitiful cycle stability caused by parasitic reactions, extremely limit their practical applications. Manganese (Mn)‐based oxides and their composites can exhibit high ORR and OER activities, reduce charge/discharge overpotential, and improve the cycling stability when used as cathodic catalyst materials. Herein, energy storage mechanisms for Li–air batteries are summarized, followed by a systematic overview of the progress of manganese‐based oxides (MnO2 with different crystal structures, MnO, MnOOH, Mn2O3, Mn3O4, MnOx, perovskite‐type and spinel‐type manganese oxides, etc.) cathodic materials for Li–air batteries in the recent years. The focus lies on the effects of crystal structure, design strategy, chemical composition, and microscopic physical parameters on ORR and OER activities of various Mn‐based oxides, and even the overall performance of Li–air batteries. Finally, a prospect of the research for Mn‐based oxides cathodic catalysts in the future is made, and some new insights for more reasonable design of Mn‐based oxides electrocatalysts with higher catalytic efficiency are provided.  相似文献   

10.
Rational design of non‐noble metal catalysts with robust and durable electrocatalytic activity for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is extremely important for renewable energy conversion and storage, regenerative fuel cells, rechargeable metal–air batteries, water splitting etc. In this work, a unique hybrid material consisting of Fe3C and Co nanoparticles encapsulated in a nanoporous hierarchical structure of N‐doped carbon (Fe3C‐Co/NC) is fabricated for the first time via a facile template‐removal method. Such an ingenious structure shows great features: the marriage of 1D carbon nanotubes and 2D carbon nanosheets, abundant active sites resulting from various active species of Fe3C, Co, and NC, mesoporous carbon structure, and intimate integration among Fe3C, Co, and NC. As a multifunctional electrocatalyst, the Fe3C‐Co/NC hybrid exhibits excellent performance for ORR, OER, and HER, outperforming most of reported triple functional electrocatalysts. This study provides a new perspective to construct multifunctional catalysts with well‐designed structure and superior performance for clean energy conversion technologies.  相似文献   

11.
Perovskite‐structured (ABO3) transition metal oxides are promising bifunctional electrocatalysts for efficient oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). In this paper, a set of epitaxial rare‐earth nickelates (RNiO3) thin films is investigated with controlled A‐site isovalent substitution to correlate their structure and physical properties with ORR/OER activities, examined by using a three‐electrode system in O2‐saturated 0.1 m KOH electrolyte. The ORR activity decreases monotonically with decreasing the A‐site element ionic radius which lowers the conductivity of RNiO3 (R = La, La0.5Nd0.5, La0.2Nd0.8, Nd, Nd0.5Sm0.5, Sm, and Gd) films, with LaNiO3 being the most conductive and active. On the other hand, the OER activity initially increases upon substituting La with Nd and is maximal at La0.2Nd0.8NiO3. Moreover, the OER activity remains comparable within error through Sm‐doped NdNiO3. Beyond that, the activity cannot be measured due to the potential voltage drop across the film. The improved OER activity is ascribed to the partial reduction of Ni3+ to Ni2+ as a result of oxygen vacancies, which increases the average occupancy of the eg antibonding orbital to more than one. The work highlights the importance of tuning A‐site elements as an effective strategy for balancing ORR and OER activities of bifunctional electrocatalysts.  相似文献   

12.
Developing nanostructured Ni and Co oxides with a small overpotential and fast kinetics of the oxygen evolution reaction (OER) have drawn considerable attention recently because their theoretically high efficiency, high abundance, low cost, and environmental benignity in comparison with precious metal oxides, such as RuO2 and IrO2. However, how to increase the specific activity area and improve their poor intrinsic conductivity is still challenging, which significantly limits the overall OER rate and largely prevent their utilization. Thus, developing effective OER electrocatalysts with abundant active sites and high electrical conductivity still remains urgent. In this work, a scrupulous design of OER electrode with a unique sandwich‐like coaxial structure of the three‐dimensional Ni@[Ni(2+/3+)Co2(OH)6–7]x nanotube arrays (3D NNCNTAs) is reported. A Ni nanotube array with open end is homogeneous coated with Ni and Co co‐hydroxide nanosheets ([Ni(2+/3+)Co2(OH)6–7]x) and is employed as multifunctional interlayer to provide a large surface area and fast electron transport and support the outermost [Ni(2+/3+)Co2(OH)6–7]x layer. The remarkable features of high surface area, enhanced electron transport, and synergistic effects have greatly assured excellent OER activity with a small overpotential of 0.46 V at the current density of 10 mA cm?2 and high stability.  相似文献   

13.
High-performance rechargeable Zn-air batteries with long-life stability are desirable for power applications in electric vehicles. The key component of the Zn-air batteries is the bifunctional oxygen electrocatalyst, however, designing a bifunctional oxygen electrocatalyst with high intrinsic reversibility and durability is a challenge. Through density functional theory calculations, it is found that the catalytic activity originated from the electronic and geometric coordination structures synergistic effect of the Fe and Co dual-sites with metal-N4 coordination environment, assisting the stronger hybridization of electronic orbitals between Co (dxz, dz2) and OO* (px, pz), thus making the stronger O2 active ability of Co active site. These findings enable to development of a fancy dual single-atom catalyst comprising adjacent Fe N4 and Co N4 sites on N-doped carbon matrix (FeCo-NC). FeCo-NC exhibits extraordinary bifunctional activities for oxygen reduction and evolution reaction (ORR/OER), which displays high half-wave potential (0.893 V) for the ORR, and low overpotential (343 mV) at 10 mA cm−2 for the OER. The assembled FeCo-NC air-electrode works well in the flexible solid-state Zn-air battery with a high specific capacity of 747.0 mAh g−1, a long-time stability of more than 400 h (30 °C), and also a superior performance at extreme temperatures (−30 °C–60 °C).  相似文献   

14.
Developing earth‐abundant, active, and robust electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a vital challenge for efficient conversion of sustainable energy sources. Herein, metal–semiconductor hybrids are reported with metallic nanoalloys on various defective oxide nanowire arrays (Cu/CuOx, Co/CoOx, and CuCo/CuCoOx) as typical Mott–Schottky electrocatalysts. To build the highway of continuous electron transport between metals and semiconductors, nitrogen‐doped carbon (NC) has been implanted on metal–semiconductor nanowire array as core–shell conductive architecture. As expected, NC/CuCo/CuCoOx nanowires arrays, as integrated Mott–Schottky electrocatalysts, present an overpotential of 112 mV at 10 mA cm?2 and a low Tafel slope of 55 mV dec?1 for HER, simultaneously delivering an overpotential of 190 mV at 10 mA cm?2 for OER. Most importantly, NC/CuCo/CuCoOx architectures, as both the anode and the cathode for overall water splitting, exhibit a current density of 10 mA cm?2 at a cell voltage of 1.53 V with excellent stability due to high conductivity, large active surface area, abundant active sites, and the continuous electron transport from prominent synergetic effect among metal, semiconductor, and nitrogen‐doped carbon. This work represents an avenue to design and develop efficient and stable Mott–Schottky bifunctional electrocatalysts for promising energy conversion.  相似文献   

15.
Non‐precious metal catalysts of the oxygen reduction reaction are highly favored for use in polymer electrolyte fuel cells (PEFC) because of their relatively low cost. Here, a new carbon‐black‐supported pyrolyzed Co‐corrole (py‐Co‐corrole/C) catalyst of the oxygen reduction reaction (ORR) in a PEFC cathode is demonstrated to have high catalytic performance. The py‐Co‐corrole/C at 700 °C exhibits optimized ORR activity and participates in a direct four‐electron reduction pathway for the reduction of O2 to H2O. The H2‐O2 PEFC test of py‐Co‐corrole/C in the cathode reveals a maximum power density of 275 mW cm?2, which yields a higher performance and a lower Co loading than previous studies of Co‐based catalysts for PEFCs. The enhancement of the ORR activity of py‐Co‐corrole/C is attributable to the four‐coordinated Co‐corrole structure and the oxidation state of the central cobalt.  相似文献   

16.
Fine control over the physicochemical structures of carbon electrocatalysts is important for improving the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in rechargeable Zn–air batteries. Covalent organic frameworks (COFs) are considered good candidate carbon materials because their structures can be precisely controlled. However, it remains a challenge to impart bifunctional electrocatalytic activities for both the ORR and OER to COFs. Herein, a pyridine-linked triazine covalent organic framework (PTCOF) with well-defined active sites and pores is readily prepared under mild conditions, and its electronic structure is modulated by incorporating Co nanoparticles (CoNP-PTCOF) to induce bifunctional electrocatalytic activities for the ORR and OER. The CoNP-PTCOF exhibits lower overpotentials for both ORR and OER with outstanding stability. Computational simulations find that the p-band center of CoNP-PTCOF down-shifted by charge transfer, compared to pristine PTCOF, facilitate the adsorption and desorption of oxygen intermediates on the pyridinic carbon active sites during the reactions. The Zn–air battery assembled with bifunctional CoNP-PTCOF exhibits a small voltage gap of 0.83 V and superior durability for 720 cycles as compared with a battery containing commercial Pt/C and RuO2. This strategy for modulating COF electrocatalytic activities can be extended for designing diverse carbon electrocatalysts.  相似文献   

17.
Rechargeable zinc–air batteries (ZnABs) are attracting great interest due to their high theoretical specific energy, safety, and economic viability. However, their performance and large‐scale practical applications are largely limited by poor durability and high overpotential on the air‐cathode due to the slow kinetics of the oxygen reduction and evolution reactions (ORR/OER). Therefore, it is highly desired to exploit an ideal bifunctional catalyst to endow the obtained ZnABs with excellent ORR/OER catalytic performances. Herein, a new nonprecious‐metal bifunctional catalyst of urchin‐like NiCo2S4 microsphere synergized with sulfur‐doped graphene nanosheets (S‐GNS/NiCo2S4) is controllably designed and synthesized by simply tailoring the structure and electronic arrangement, which endow the as‐prepared catalyst with excellent electroactivity and long‐term durability toward ORR and OER. Importantly, ZnABs constructed by this outstanding catalyst exhibit high power density, small charge/discharge voltage gap, and excellent cycle stability, notably outperforming the more costly commercial Pt/C + Ir/C mixture catalyst. These excellent electrocatalytic performances together with the simplicity of the synthetic method, make the urchin‐like NiCo2S4 microsphere/S‐GNS hybrid nanostructure exhibit great promise as a superior air‐cathode catalyst for high‐performance rechargeable ZnABs.  相似文献   

18.
The simultaneous and efficient evolution of hydrogen and oxygen with earth‐abundant, highly active, and robust bifunctional electrocatalysts is a significant concern in water splitting. Herein, non‐noble metal‐based Ni–Co–S bifunctional catalysts with tunable stoichiometry and morphology are realized. The engineering of electronic structure and subsequent morphological design synergistically contributes to significantly elevated electrocatalytic performance. Stable overpotentials (η10) of 243 mV (vs reversible hydrogen electrode) for oxygen evolution reaction (OER) and 80 mV for hydrogen evolution reaction (HER), as well as Tafel slopes of 54.9 mV dec?1 for OER and 58.5 mV dec?1 for HER, are demonstrated. In addition, density functional theory calculations are performed to determine the optimal electronic structure via the electron density differences to verify the enhanced OER activity is related to the Co top site on the (110) surface. Moreover, the tandem bifunctional NiCo2S4 exhibit a required voltage of 1.58 V (J = 10 mA cm?2) for simultaneous OER and HER, and no obvious performance decay is observed after 72 h. When integrated with a GaAs solar cell, the resulting photoassisted water splitting electrolyzer shows a certified solar‐to‐hydrogen efficiency of up to 18.01%, further demonstrating the feasibility of engineering protocols and the promising potential of bifunctional NiCo2S4 for large‐scale overall water splitting.  相似文献   

19.
Hierarchically structured nitrogen‐doped carbon nanotube (NCNT) composites, with copper (Cu) nanoparticles embedded uniformly within the nanotube walls and cobalt oxide (CoxOy) nanoparticles decorated on the nanotube surfaces, are fabricated via a combinational process. This process involves the growth of Cu embedded CNTs by low‐ and high‐temperature chemical vapor deposition, post‐treatment with ammonia for nitrogen doping of these CNTs, precipitation‐assisted separation of NCNTs from cobalt nitrate aqueous solution, and finally thermal annealing for CoxOy decoration. Theoretical calculations show that interaction of Cu nanoparticles with CNT walls can effectively decrease the work function of CNT surfaces and improve adsorption of hydroxyl ions onto the CNT surfaces. Thus, the activities of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are significantly enhanced. Because of this benefit, further nitrogen doping, and synergistic coupling between CoxOy and NCNTs, Cu@NCNT/CoxOy composites exhibit ORR activity comparable to that of commercial Pt/C catalysts and high OER activity (outperforming that of IrO2 catalysts). More importantly, the composites display superior long‐term stability for both ORR and OER. This simple but general synthesis protocol can be extended to design and synthesis of other metal/metal oxide systems for fabrication of high‐performance carbon‐based electrocatalysts with multifunctional catalytic activities.  相似文献   

20.
The development of highly active and stable earth‐abundant catalysts to reduce or eliminate the reliance on noble‐metal based ones in green and sustainable (electro)chemical processes is nowadays of great interest. Here, N‐, O‐, and S‐tridoped carbon‐encapsulated Co9S8 (Co9S8@NOSC) nanomaterials are synthesized via simple pyrolysis of S‐ and Co(II)‐containing polypyrrole solid precursors, and the materials are proven to serve as noble metal‐free bifunctional electrocatalysts for water splitting in alkaline medium. The nanomaterials exhibit remarkable catalytic performances for oxygen evolution reaction in basic electrolyte, with small overpotentials, high anodic current densities, low Tafel slopes as well as very high (nearly 100%) Faradic efficiencies. Moreover, the materials are found to efficiently electrocatalyze hydrogen evolution reaction in acidic as well as basic solutions, showing high activity in both cases and maintaining good stability in alkaline medium. A two‐electrode electrolyzer assembled using the material synthesized at 900 °C (Co9S8@NOSC‐900) as an electrocatalyst at both electrodes gives current densities of 10 and 20 mA cm?2 at potentials of 1.60 and 1.74 V, respectively. The excellent electrocatalytic activity exhibited by the materials is proposed to be mainly due to the synergistic effects between the Co9S8 nanoparticles cores and the heteroatom‐doped carbon shells in the materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号