首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
《石油化工》2015,44(4):471
以柠檬酸为络合剂,制备了稳定的Co Mo浸渍液Co Mo-CA(CA表示柠檬酸),将其浸渍于γ-Al2O3载体上制备了免焙烧的Co Mo-CA/Al2O3催化剂,采用UV-Vis、FTIR、N2吸附-脱附、H2-TPR和HRTEM等手段对催化剂进行分析与表征;以直馏柴油为原料,在高压微反装置上评价了催化剂的加氢脱硫和加氢脱氮活性。实验结果表明,Co Mo-CA浸渍液中柠檬酸不能置换出[Co(H2O)6]2+中的水分子形成新的Co2+-柠檬酸配合物;柠檬酸与活性组分M o形成配合物,提高了溶液的稳定性。免焙烧的Co Mo-CA/Al2O3催化剂中活性组分Mo以金属配合物的形式存在,柠檬酸在硫化过程中逐步分解,有利于降低活性组分与载体的相互作用,Mo的硫化变慢,避免形成难硫化的Mo物种,有利于Ⅱ型Co-Mo-S活性相的形成。在所考察的评价条件范围内,免焙烧的Co Mo-CA/Al2O3催化剂的加氢活性优于焙烧后的催化剂。  相似文献   

2.
非负载型催化剂上柴油深度加氢脱硫工艺条件研究   总被引:1,自引:0,他引:1  
采用水热合成法制备了非负载型Ni-Mo-W催化剂并对其进行表征,研究催化裂化(FCC)柴油在该催化剂上的深度加氢脱硫过程,考察反应温度、反应压力、空速和氢油比等工艺条件对柴油深度加氢脱硫效果的影响,并与工业化NiMo/Al2O3催化剂的加氢活性进行对比。结果表明,在反应温度为340 ℃、反应压力为6.0 MPa、空速为1.5 h-1、氢油体积比为600的条件下,非负载型Ni-Mo-W催化剂可使胜华FCC柴油的脱硫率达到99.84%,脱氮率达到99.96%,与工业化NiMo/Al2O3催化剂相比,非负载型Ni-Mo-W催化剂具有更高的加氢活性。  相似文献   

3.
采用化学气相沉积法制备了Ni/Al2O3催化剂, 对其进行了加氢活性评价和表征. 结果表明, 在合适的条件下下, 可以得到具有高分散度和高活性的Ni/Al2O3催化剂. 在Al2O3载体中引入助剂可以减弱活性组分Ni与Al2O3载体之间的相互作用, 有利于NiO还原成Ni活性中心。化学气相沉积法制备的Ni/Al2O3催化剂比传统浸渍法制备Ni/Al2O3催化剂具有更高的加氢活性。透射电镜结果表明,Al2O3载体表面上活性相呈纳米分布,具有较高的分散度,该催化剂中Ni质量分数可降低32.5%,而其加氢催化活性不降低.化学气相沉积法制备的Ni/Al2O3催化剂可用于白油加氢精制.  相似文献   

4.
以等体积浸渍法制备Ni-Mo/Al2O3催化裂化柴油加氢处理催化剂,在金属浸渍液配置过程中引入一定比例的络合剂氨基三乙酸(NTA)制备改性催化剂Ni-Mo-NTA/Al2O3,通过改性前后催化剂的对比分析研究氨基三乙酸对催化剂加氢脱硫和脱氮活性的影响。采用100 mL高压加氢反应装置对催化剂进行加氢脱硫、脱氮反应活性评价,并以NH3-TPD,H2-TPR,BET,HRTEM 等手段对催化剂进行表征。结果表明,引入氨基三乙酸后催化剂在不同反应温度等级下加氢脱硫和脱氮活性均有提高,这是由于氨基三乙酸改性后催化剂表面酸量提高,载体与金属作用力削弱,金属还原度提高,孔结构得到改善,MoS2金属堆垛层数集中在2~3层,片晶长度集中在2~4 nm,金属分散度提高。  相似文献   

5.
利用直馏柴油加氢脱硫反应研究初活稳定过程对NiMo/Al2O3催化剂加氢脱硫活性稳定性的影响。分别采用干法和湿法两种硫化方式制备的NiMo/Al2O3催化剂在初活稳定条件下处理48 h。对比评价了无初活稳定和经48 h初活稳定处理工况下催化剂活性以及积炭量发生的变化。借助XPS,TEM,TG-MASS和碳含量分析等方法对样品进行了表征。结果表明:采用干法或湿法硫化,初活稳定过程均可以提高新鲜硫化后NiMo/Al2O3催化剂的稳定性;初活稳定过程促进了活性相上积炭量的增加,而这些积炭的存在可起到适度修饰活性相表面结构的作用,有助于提高催化剂的稳定性。  相似文献   

6.
利用直馏柴油加氢脱硫反应研究初活稳定过程对NiMo/Al2O3催化剂加氢脱硫活性稳定性的影响。分别采用干法和湿法两种硫化方式制备的NiMo/Al2O3催化剂在初活稳定条件下处理48h,对比评价了无初活稳定和经48h初活稳定处理工况下催化剂活性以及积炭量发生的变化,并借助XPS,TEM,TG-MASS和碳含量分析等方法对样品进行了表征。结果表明:采用干法或湿法硫化,初活稳定过程均可以提高硫化后NiMo/Al2O3催化剂的稳定性;初活稳定过程促进了活性相上积炭量的增加,而这些积炭的存在可起到适度修饰活性相表面结构的作用,有助于提高催化剂的稳定性。  相似文献   

7.
制备了孔分布集中的氧化铝载体,并以饱和浸渍法制备了CoMo/Al2O3催化剂,考察了Co/(Co+Mo)原子比和助剂对催化剂加氢脱硫活性及表面性质的影响。结果表明:当Co/(Co+Mo)原子比为0.3左右时,催化剂的加氢脱硫活性最好;催化剂中引入适量的助剂,可以提高CoMo/Al2O3催化剂的活性。在此基础上研制出具有高加氢脱硫活性的RMS-30催化剂。中型装置评价及工业应用结果表明,与上一代渣油加氢脱硫催化剂相比,RMS-30催化剂具有更好的脱硫和脱残炭性能。  相似文献   

8.
以孔饱和浸渍法制备不同Ni/(Ni+V)原子比的NiV/Al2O3催化剂,并对催化剂进行拉曼光谱和H2-程序升温还原(H2-TPR)表征。以科威特常压渣油为原料,考察不同Ni/(Ni+V)原子比的NiV/Al2O3催化剂的渣油加氢脱金属和脱硫活性。研究结果表明:Ni可促进V的聚集,减弱V与载体间的相互作用;Ni与V具有协同作用,Ni/(Ni+V)原子比为0.25时,催化剂的渣油加氢脱金属活性明显高于其它Ni/(Ni+V)原子比的催化剂,渣油加氢脱硫活性略高于其它Ni/(Ni+V)原子比的催化剂。  相似文献   

9.
采用常规透射电子显微技术(TEM)和扫描透射电子显微技术结合X射线能谱分析的测量技术(简称分析电子显微技术——AEM)对NiMo/Al2O3系工业加氢脱硫催化剂的氧化态和硫化态进行对比研究。结果表明,对于硫化态加氢脱硫催化剂,TEM可以给出清晰的活性相的形貌和分布信息,活性相条纹的长度、堆叠层数等活性相参数特征的统计与其催化活性具有良好的关联。通过AEM的Mapping技术对NiMo/Al2O3催化剂氧化态和硫化态活性组分Ni、Mo的微区成分分布的测定,可获得催化剂活性相前体和硫化态活性组分的成分分布信息,克服了单一TEM不能提供成分信息的缺点,增加了对催化剂制备过程中活性组分变化的了解。  相似文献   

10.
以ZSM-5-Al2O3复合物为载体制备了系列添加络合剂柠檬酸、氮川三乙酸、乙二胺四乙酸和环己二胺四乙酸的CoMo负载型催化剂,考察络合剂对CoMo催化剂加氢脱硫选择性的影响,并采用N2吸附-脱附、X射线衍射、傅里叶变换红外光谱、H2-程序升温还原、NH3-程序升温脱附、高分辨透射电镜、27Al固体高分辨核磁共振及X射线光电子能谱等手段进行表征。结果表明:催化剂制备过程中添加的络合剂优先与Co及载体中的Al络合,该络合作用可降低金属组分的还原温度,提高Mo的硫化度,增加催化剂活性中心数目。将络合剂引入催化剂后,MoS2片晶堆垛层数和MoS2片晶长度均增加,但 MoS2片晶堆垛层数对脱硫的促进作用占据主导地位,致使络合剂改性催化剂的脱硫活性增加幅度大于烯烃饱和活性增加幅度。  相似文献   

11.
通过设计浸渍液中金属前驱物的分子结构以期制备高效的NiMo/Al2O3加氢脱硫催化剂。首先设计了5种典型的浸渍液。不同浸渍液的LRS表征结果表明检测到的含钼前驱体主要有类 [Mo4(citrate)2O11]4-, [P2Mo18O62]6-和[P2Mo5O23]6-等。UV-Vis光谱表征结果发现,当浸渍液中同时添加柠檬酸和磷酸时,可改变镍物种的存在状态。采用初始润湿法负载金属组分经干燥后制备了相应的NiMo/Al2O3催化剂。干燥后催化剂的LRS表征结果表明,上述不同分子结构的金属前驱物均至少有一部分可完好的保留在载体上,尽管金属前驱物与氧化铝载体之间不可避免的存在着界面反应。催化剂经硫化后,借助N2物理吸附、TEM和XPS对新鲜硫化的催化剂进行了表征。结果表明,浸渍液中的不同金属前驱体主要会产生(Ni)MoS2片晶形貌以及镍助催化效果的差异。其中,与采用类  [Mo4(citrate)2O11]4-制备的催化剂相比,采用类[P2Mo5O23]6-前驱体制备的催化剂所形成的Ni-Mo-S活性相较少且分散较差。而采用浸渍液中同时存在类  [Mo4(citrate)2O11]4-, [P2Mo18O62]6-和[P2Mo5O23]6-等含钼前驱体制备的催化剂则由于其能形成更多的分散较好的Ni-Mo-S活性相而表现出更高的4,6-DMDBT加氢脱硫活性。  相似文献   

12.
向一系列不同金属原子比[r=n(Ni)/n(Ni+Mo)]的NiMo/γ-Al2O3催化剂中引入柠檬酸,考察了柠檬酸对NiMo催化剂加氢脱硫活性的影响,并采用XRD,XPS,HRTEM等表征手段,从活性金属分散性、硫化度、活性相比例以及活性相形貌等方面分析了柠檬酸对助剂Ni作用的影响。结果表明:在r<0.3时,柠檬酸对NiMo催化剂的加氢脱硫活性有促进作用,柠檬酸的引入提高了催化剂的硫化度和NiMoS活性相的比例,有利于形成片晶尺寸较小、堆叠层数较多的活性相,对Ni的助剂效应有小幅促进作用;但是当r≥0.3时,柠檬酸对NiMo催化剂的加氢脱硫活性基本没有促进作用,柠檬酸的引入并未明显改变NiMo催化剂的活性金属硫化度、NiMoS活性相比例以及活性相形貌,对Ni的助剂效应影响较小。  相似文献   

13.
钼镍磷溶液的制备和表征   总被引:2,自引:0,他引:2  
 以三氧化钼、碱式碳酸镍、磷酸为原料,制备了Mo-Ni-P-O溶液。在Mo-Ni-P-O溶液的制备过程中发现存在1个可配区间和2个难配区间,考察了可配比关系及可配区间内溶液的性质,并初步探讨了各区间的形成原因以及可配区间内不同物料配比的Mo-Ni-P-O溶液形成速率。在Mo-Ni-P-O浸渍液中添加一定量的柠檬酸,采用共浸渍法制备了Mo-Ni-P-O/γ-Al2O3催化剂,考察了催化剂组成对其噻吩的加氢脱硫性能的影响。结果表明,当催化剂中Mo、Ni 、P 含量分别为1.67、0.65、0.32mmol/(g Cat)时, 为24%、NiO含量为4.8%、P含量为1%时,Mo-Ni-P-O/γ-Al2O3催化剂表现出较好的噻吩加氢脱硫活性。  相似文献   

14.
采用程序升温还原和X-射线光电子能谱表征手段对浸渍法制备的系列NiMo/Al2O3催化剂进行了表征,研究了催化剂中活性组分Ni、Mo物种与载体Al2O3间的相互作用以及磷对其相互作用的影响。结果表明:活性组分与Al2O3间存在强弱程度不同的相互作用,Ni、Mo物种间也存在相互作用,而磷的添加能够降低活性组分与载体间的相互作用。催化剂硫化前后Al2p的XPS分析证明了与活性组分相互作用的Al物种的存在,并通过拟合分析确定了这些Al物种结合能的位置;通过对硫化后样品Al2p的XPS分析初步定量地确定了磷对活性组分Mo与载体间相互作用的影响。  相似文献   

15.
 采用常规透射电子显微技术(TEM)和扫描透射电子显微技术结合X射线能谱分析的测量技术(简称分析电子显微技术- —AEM)对NiMo/Al2O3系工业加氢脱硫催化剂的氧化态和硫化态进行对比研究。结果表明,对于硫化态加氢脱硫催化剂,TEM可以给出清晰的活性相的形貌和分布信息,活性相条纹的长度、堆叠层数等活性相参数特征的统计与其催化活性具有良好的关联。通过AEM的Mapping技术对NiMo/Al2O3催化剂氧化态和硫化态活性组分Ni、Mo的微区成分分布的测定,可获得催化剂活性相前体和硫化态活性组分的成分分布信息,克服了单一TEM不能提供成分信息的缺点,增加了对催化剂制备过程中活性组分变化的了解。  相似文献   

16.
 以含V溶液浸渍法制备了一系列含V的 NiMo/Al2O3催化剂,考察了 V2O5质量分数对 NiMo/Al2O3催化剂加氢性能的影响,并对催化剂进行了 BET、SEM、IR-OH、紫外-可见漫反射光谱以及拉曼光谱表征。结果表明,含 V 的 NiMo/Al2O3催化剂加氢活性明显低于不含 V 的 NiMo/Al2O3催化剂;随着催化剂上 V2O5质量分数的增加,多聚体V的出现导致V-S相的加氢活性增加,催化剂加氢活性先迅速下降,再逐渐趋于平稳。  相似文献   

17.
Pd-CeO_2/Al_2O_3催化剂的加氢脱硫性能   总被引:4,自引:0,他引:4  
鲁勋  罗来涛  程新孙 《石油化工》2007,36(5):461-466
采用浸渍法制备了Pd/Al2O3和Pd-CeO2/Al2O3催化剂,以噻吩加氢脱硫为探针反应,考察了CeO2对Pd/Al2O3催化剂的改性作用及制备方法对Pd-CeO2/Al2O3催化剂加氢脱硫性能的影响;采用X射线衍射、程序升温还原、程序升温脱附和噻吩吸附等方法表征了催化剂的吸附性能和酸性。实验结果表明,与Pd/Al2O3催化剂相比,分浸法制备的Pd-CeO2/Al2O3催化剂的H2吸附量下降了25%,但噻吩吸附能力增加了35%,加氢脱硫活性得到提高。Pd-CeO2/Al2O3催化剂中的Pd-Ce相互作用使Ce主要以近似于+3的价态存在,Ce3+可能是不同于B酸的另一种噻吩吸附中心。与共浸法制备的Pd-CeO2/Al2O3催化剂相比,分浸法制备的Pd-CeO2/Al2O3催化剂的Pd-Ce结合作用较强,导致Ce3+含量较高,从而具有较高的加氢脱硫活性。  相似文献   

18.
NiMo/ZrO_2加氢脱硫催化剂的研究   总被引:6,自引:6,他引:0  
采用共浸法制备了未经焙烧直接硫化的NiMo/ZrO2(550)、NiMo/ZrO2(650)催化剂及550℃焙烧后再硫化的NiMo/ZrO2(550)-1催化剂,在连续流动微反装置上考察了NiMo/ZrO2系列催化剂对噻吩加氢脱硫反应的催化活性,并对催化剂进行了X射线光电子能谱(XPS)和Raman光谱表征。表征结果显示,以四方相ZrO2为载体的NiMo/ZrO2(650)催化剂,由于被硫化的更完全,催化活性高于以无定形相ZrO2为载体的NiMo/ZrO2(550)催化剂,说明载体的结构影响催化剂的催化活性;550℃焙烧后的NiMo/ZrO2(550)-1催化剂的催化活性低于未经焙烧直接硫化的NiMo/ZrO2(550)催化剂,这是由于高温焙烧增加了活性组分和载体之间的相互作用,降低了催化剂的硫化程度,进而降低了其催化活性,说明这种强相互作用不利于提高催化剂的催化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号