首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
The interest in thermoelectrics for power generation applications has dramatically increased over the past decade as a result of recent advancements in thermoelectric materials. Although measuring thermoelectric properties of materials has received significant attention, measuring thermoelectric module (TEM) power generation performance has received less attention. Characterizing TEMs is vital for validating module-level models used in optimizing TEM designs. Measurements of module performance can also be used for the optimal incorporation of TEMs into power generation systems. A TEM test apparatus has been developed and characterized to test current and future modules under a wide range of temperature and loading conditions. In addition to temperatures and electrical performance metrics, heat rates, and mechanical loading conditions are monitored. The developed technique extracts module parameters, which can be used for system-level design, to measure performance of advanced TEMs, and to validate theoretical models for module design optimization. Experimental results are compared with standard analytical TEM models and a newly developed model.  相似文献   

2.
In the field of passenger transportation a reduction of the consumption of fossil fuels has to be achieved by any measures. Advanced designs of internal combustion engine have the potential to reduce CO2 emissions, but still suffer from low efficiencies in the range from 33% to 44%. Recuperation of waste heat can be achieved with thermoelectric generators (TEGs) that convert heat directly into electric energy, thus offering a less complicated setup as compared with thermodynamic cycle processes. During a specific driving cycle of a car, the heat currents and temperature levels of the exhaust gas are dynamic quantities. To optimize a thermoelectric recuperation system fully, various parameters have to be tested, for example, the electric and thermal conductivities of the TEG and consequently the heat absorbed and rejected from the system, the generated electrical power, and the system efficiency. A Simulink model consisting of a package for dynamic calculation of energy management in a vehicle, coupled with a model of the thermoelectric generator system placed on the exhaust system, determines the drive-cycle-dependent efficiency of the heat recovery system, thus calculating the efficiency gain of the vehicle. The simulation also shows the temperature drop at the heat exchanger along the direction of the exhaust flow and hence the variation of the voltage drop of consecutively arranged TEG modules. The connection between the temperature distribution and the optimal electrical circuitry of the TEG modules constituting the entire thermoelectric recuperation system can then be examined. The simulation results are compared with data obtained from laboratory experiments. We discuss error bars and the accuracy of the simulation results for practical thermoelectric systems embedded in cars.  相似文献   

3.
All liquid heating systems, including solar thermal collectors and fossil-fueled heaters, are designed to convert low-temperature liquid to high-temperature liquid. In the presence of low- and high-temperature fluids, temperature differences can be created across thermoelectric devices to produce electricity so that the heat dissipated from the hot side of a thermoelectric device will be absorbed by the cold liquid and this preheated liquid enters the heating cycle and increases the efficiency of the heater. Consequently, because of the avoidance of waste heat on the thermoelectric hot side, the efficiency of heat-to-electricity conversion with this configuration is better than that of conventional thermoelectric power generation systems. This research aims to design and analyze a thermoelectric power generation system based on the concept described above and using a low-grade heat source. This system may be used to generate electricity either in direct conjunction with any renewable energy source which produces hot water (solar thermal collectors) or using waste hot water from industry. The concept of this system is designated “ELEGANT,” an acronym from “Efficient Liquid-based Electricity Generation Apparatus iNside Thermoelectrics.” The first design of ELEGANT comprised three rectangular aluminum channels, used to conduct warm and cold fluids over the surfaces of several commercially available thermoelectric generator (TEG) modules sandwiched between the channels. In this study, an ELEGANT with 24 TEG modules, referred to as ELEGANT-24, has been designed. Twenty-four modules was the best match to the specific geometry of the proposed ELEGANT. The thermoelectric modules in ELEGANT-24 were electrically connected in series, and the maximum output power was modeled. A numerical model has been developed, which provides steady-state forecasts of the electrical output of ELEGANT-24 for different inlet fluid temperatures.  相似文献   

4.
Thermoelectric Power Generation System Using Waste Heat from Biomass Drying   总被引:1,自引:0,他引:1  
This paper looks at thermoelectric power generation from waste heat from a biomass drier. In this study, the researchers selected four thermoelectric modules: two thermoelectric cooling modules (Model A: MT2-1,6-127 and Model B: TEC1-12708) and two thermoelectric power generation modules (Model C: TEP1-1264-3.4 and Model D: TEG1-1260-5.1) for testing at temperatures between 25°C and 230°C. Test results indicated that the thermoelectric TEC1-12708 could generate a maximum power output of 1 W/module and TEP1-1264-3.4, TEG1-1260-5.1, and MT2-1,6-127 could generate 1.07 W/module, 0.88 W/module, and 0.76 W/module, respectively. Therefore, the thermoelectric cooling of TEC1-12708 was appropriate to use for thermoelectric power generation from waste heat. The experiments used four ventilation fans (6 W, 2.50 m3/s) and 12 thermoelectric modules which were installed in the back of a charcoal brazier. The experiments were conducted and tested in conditions of recycling 100%, 75%, 50%, and 25% of outlet air. Testing results identified that the temperatures of the drying room were 81°C, 76°C, 70°C, and 64°C, respectively. The power generation system could generate about 22.4 W (14 V, 1.6 A) with an air flow of 9.62 m3/s. The thermoelectric module can convert 4.08% of the heat energy to electrical energy.  相似文献   

5.
The development of thermoelectrics (TE) for energy conversion is in the transition phase from laboratory research to device development. There is an increasing demand to accurately determine the module efficiency, especially for the power generation mode. For many TE, the figure of merit, ZT, of the material sometimes cannot be fully realized at the device level. Reliable efficiency testing of thermoelectric modules is important to assess the device ZT and provide end-users with realistic values for how much power can be generated under specific conditions. We conducted a general survey of efficiency testing devices and their performance. The results indicated a lack of industry standards and test procedures. This study included a commercial test system and several laboratory systems. Most systems are based on the heat flow meter method, and some are based on the Harman method. They are usually reproducible in evaluating thermoelectric modules. However, different systems often showed large differences that are likely caused by uncertain heat loss and thermal resistance. Efficiency testing is an important capability for the thermoelectric community to improve. A follow-up international standardization effort is planned.  相似文献   

6.
A primary challenge still exists in the field of thermoelectric generators (TEG) for practical applications in which a thermal system of the TEG is a crucial factor in TEG power generation. The material development for TEG has contributed significantly towards advancement in TEG applications over a decade, the need for a thermal system configuration is inevitable considering the applications. The thermal efficiency of TEG depends upon the temperature difference across its modules (between the hot and cold surfaces). Thermal design of the thermoelectric system is important to ensure that there exists a maximum temperature difference across the hot and cold surfaces of the TEG. Thermal Interface Material (TIM) in thermoelectric systems plays a main role in improving the efficiency of thermoelectric systems by reducing the temperature difference between the heat source and the hot surface of the TEG and similarly, the temperature difference between the cold surface of TEG and the heat sink. This review paper predominantly focuses on the thermal interfaces between the TEG modules which reduces the performance of a thermoelectric system. The characteristics of TIM in a TEG system (contact pressure, surface roughness and thermal conductivity) were analyzed with a mathematical model to emphasize the importance of TIM in a TEG system. This paper also highlights the existing challenges for Thermal Interface Materials in TEG applications and concludes with a brief discussion on future directions of TIM in TEG thermal systems.  相似文献   

7.
To facilitate the co-design and co-optimization of fluid or combustion systems and thermoelectric devices, a three-dimensional (3D) thermoelectric generator (TEG) model has been proposed and implemented in a computational fluid dynamics (CFD) simulation environment. The model includes all temperature-dependent characteristics of the materials and nonlinear fluid–thermal– electric multiphysics coupled effects. In this paper, the device-level model is first extended to the module level by taking a general geometry, identifying regions such as positive and negative thermoelements, and assigning properties to them. The system-level model is then demonstrated by coupling the module-level model with a fluidic–thermal system model in a single CFD simulator to predict the generation performance based on the thermal equilibrium that is achieved. The linked models are validated experimentally at the system level using data from three real thermoelectric modules installed on the surface of an exhaust pipe-like rig, where the temperature profile as well as the electricity generated can be measured and compared with the simulation results. The rig is intended not only to verify the proposed system model but also to mimic a practical exhaust recovery apparatus for a proton exchange membrane fuel cell (PEMFC). Based on the data obtained from the system-level test rig, a novel low-temperature low-cost application for auxiliary electric power appliances based on the waste heat of the PEMFC can be envisaged. Within the common simulator, it is shown that the thermoelectric model can be connected to various continuum-domain CFD models of the fuel cell itself, thus enabling further possibilities to optimize system efficiency and performance.  相似文献   

8.
In automobiles thermal energy is used at various energy scales. With regard to reduction of CO2 emissions, efficient generation of hot and cold temperatures and wise use of waste heat are of paramount importance for car manufacturers worldwide. Thermoelectrics could be a vital component in automobiles of the future. To evaluate the applicability of thermoelectric modules in automobiles, a Modelica model of a thermoelectric liquid–gas heat exchanger was developed for transient simulations. The model uses component models from the object-oriented Modelica library TIL. It was validated based on experimental data of a prototype heat exchanger and used to simulate transient and steady-state behavior. The use of the model within the energy management of an automobile is successfully shown for the air-conditioning system of a car.  相似文献   

9.
Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power ≤5.1 W/kg. A higher specific power would result in more onboard power for the same RTG mass, or less RTG mass for the same onboard power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermomechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.  相似文献   

10.
Based on Bi2Te3 thermoelectric modules, a kind of automobile exhaust thermoelectric generator (AETEG) with a single-column cold-source structure was designed. To enhance its net power and efficiency, the output performance of all the thermoelectric modules was tested with a temperature monitoring unit and voltage monitoring unit, and modeled using a back-propagation (BP) neural network based on various hot-source temperatures, cold-source temperatures, load currents, and contact pressures according to the temperature distribution of the designed heat exchanger and cooling system. Then, their electric topology (series or parallel hybrid) was optimized using a genetic algorithm to achieve the maximum peak power of the AETEG. From the experimental results, compared with when all the thermoelectric modules were connected only in series or parallel at random, it is concluded that the AETEG performance is evidently affected by the electric topology of all the single thermoelectric modules. The optimized AETEG output power is greatly superior to the other two investigated designs, validating the proposed optimized electric topology as both feasible and practical.  相似文献   

11.
The performance of thermoelectric modules for energy-harvesting applications is investigated, and a model is presented to predict module performance. Derived from energy conservation equations, the model predicts module performance by solving for the temperatures at both ends of the thermoelectric materials within a module. Unlike traditional methods, the model accounts for the effect of electrical current with respect to the load resistance by considering additional heat transfer by Joule heating and the Peltier effect. This establishes a nonlinear quadratic form of temperatures which can be solved by an iterative numerical solution. The model is extended to predict the performance of energy-harvesting systems, which may include connection of multiple thermoelectric modules in series to meet the necessary power requirements. However, a key issue with multiple module connection is the power reduction that arises when there are significant differences in module properties and/or the corresponding external conditions to which each individual module is exposed. Power reduction is thus investigated, as in some cases the overall power output for multiple modules can be less than the power output of a single module. For validation and comparison of the model, experimental support is provided for the case of two commercial thermoelectric modules connected in series. The model also provides optimum load resistances, and a system optimization of the number of modules for a designated heat sink to maximize power generation. The overarching goal of this work is to provide performance prediction and optimization considerations for actual thermoelectric energy-harvesting systems.  相似文献   

12.
This paper presents a combustion-driven thermoelectric power generation system that uses PbSnTe-based thermoelectric modules. The modules were integrated into a gas-fired furnace with a special burner design. The thermoelectric integrated system could be applied for self-powered appliances or micro-cogeneration. A mathematical model for the integrated energy system was established that considered irreversibilities in the thermal-to-electric energy conversion process. The electric power output and electrical efficiency of the system were simulated using the established model. A prototype system was developed and its performance was investigated at various operating conditions. Applicability of thermoelectric devices to self-powered heating systems was demonstrated. The thermoelectric integrated combustion system could provide the consumer with heating system reliability and a reduction in electric power consumption. The integrated system could also offer other advantages including simplicity, low noise, clean operation, and low maintenance.  相似文献   

13.
Most thermoelectric refrigerators used for food conservation are operated by on/off temperature controllers, because of their simplicity and low cost. This type of controller poses a major problem: when the inner temperature reaches the lower setpoint and the thermoelectric modules are switched off, a great amount of the heat stored in the heat exchanger at the hot end of the modules goes back into the refrigerator, by heat conduction through the modules and the heat extender. This effect significantly increases the electric power consumption of the refrigerator. This work studies experimentally the influence of different temperature control systems on the electric power consumption and coefficient of performance of a thermoelectric refrigerator: an on/off controller, a proportional–integral–derivative controller, and a novel operating system based on idling voltages. The latter provides voltage to the modules once the inner temperature reaches the lower setpoint, instead of switching them off, preventing heat from going back. A prototype has been constructed to compare these operating systems. Results prove that the controller based on idling voltages reduces the electric power consumption of the refrigerator by 32% and increases the coefficient of performance by 64%, compared with the on/off controller.  相似文献   

14.
A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.  相似文献   

15.
In this work, a self-powered residential heating system was developed using thermoelectric generation technology. A full-size prototype was designed, constructed, and tested, in which Bi2Te3-based thermoelectric modules were incorporated into a gas-fired heating boiler. Up to 161 W of electricity is generated by the thermoelectric modules. This is sufficient to power all the electrical components of the residential heating equipment including pump, fan, blower, valves, and control panel. In this way, the heating system can operate entirely on fuel combustion and does not need externally generated electricity. The performance of the thermoelectric devices has been investigated in the integrated heating system under various operating conditions. The energy system’s advantages include simplicity, low noise, clean operation, and low maintenance. The thermoelectric self-powered heating system could provide the consumer with heating system reliability and a reduction in electric power consumption.  相似文献   

16.
Solid oxide fuel cells (SOFCs) are being researched around the world. In Japan, a compact SOFC system with rated alternative current (AC) power of 700 W has become available on the market, since the base load electricity demand for a standard home is said to be less than 700 W AC. To improve the generating efficiency of SOFC systems in the 700-W class, we focused on thermoelectric generation (TEG) technology, since there are a lot of temperature gradients in the system. Analysis based on simulations indicated the possibility of introducing thermoelectric generation at the air preheater, steam generator, and exhaust outlet. Among these options, incorporating a TEG heat exchanger comprising multiple CoSb3/SiGe-based TEG modules into the air preheater had potential to produce additional output of 37.5 W and an improvement in generating efficiency from 46% to 48.5%. Furthermore, by introducing thermoelectric generation at the other two locations, an increase in maximum output of more than 50 W and generating efficiency of 50% can be anticipated.  相似文献   

17.
Thermoelectric refrigeration has the outstanding advantage of allowing accurate temperature control. However, on the market there are thermoelectric refrigerators which include on/off temperature control systems, because of their simplicity and low cost. The major problem with this system is that, when the thermoelectric modules are switched off, the heat stored in the heat exchanger at the hot end of the modules goes back into the refrigerator, forming a thermal bridge. In this work, we use a computational model, presented and validated in previous papers, to study alternative control systems. A new system is introduced based on idling voltages; that is, once the temperature of the refrigerator reaches the lower limit, the thermoelectric modules are not switched off but supplied with minimum voltage. Computational results prove that this system reduces the electric power consumption of the refrigerator by at least 40% with respect to that obtained with on/off control systems, and the coefficient of performance increases close to the maximum provided by any other control system.  相似文献   

18.
Thermoelectric (TE) power generation technology, due to its several advantages, is becoming a noteworthy research direction. Many researchers conduct their performance analysis and optimization of TE devices and related applications based on the generalized thermoelectric energy balance equations. These generalized TE equations involve the internal irreversibility of Joule heating inside the thermoelectric device and heat leakage through the thermoelectric couple leg. However, it is assumed that the thermoelectric generator (TEG) is thermally isolated from the surroundings except for the heat flows at the cold and hot junctions. Since the thermoelectric generator is a multi-element device in practice, being composed of many fundamental TE couple legs, the effect of heat transfer between the TE couple leg and the ambient environment is not negligible. In this paper, based on basic theories of thermoelectric power generation and thermal science, detailed modeling of a thermoelectric generator taking account of the phenomenon of energy loss from the TE couple leg is reported. The revised generalized thermoelectric energy balance equations considering the effect of heat transfer between the TE couple leg and the ambient environment have been derived. Furthermore, characteristics of a multi-element thermoelectric generator with irreversibility have been investigated on the basis of the new derived TE equations. In the present investigation, second-law-based thermodynamic analysis (exergy analysis) has been applied to the irreversible heat transfer process in particular. It is found that the existence of the irreversible heat convection process causes a large loss of heat exergy in the TEG system, and using thermoelectric generators for low-grade waste heat recovery has promising potential. The results of irreversibility analysis, especially irreversible effects on generator system performance, based on the system model established in detail have guiding significance for the development and application of thermoelectric generators, particularly for the design and optimization of TE modules.  相似文献   

19.
There is enormous military and commercial interest in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. In the design and development of this portable TE power system using a JP-8 combustor as a high-temperature heat source, optimal process flows depend on efficient heat generation, transfer, and recovery within the system. The combustor performance and TE subsystem performance were coupled directly through combustor exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation and design optimization of this TE power system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed TE converter thermal/mechanical modeling. To this end, this paper reports integration of system-level process flow simulations using CHEMCAD? commercial software with in-house TE converter and module optimization, and heat exchanger analyses using COMSOL? software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem-level conversion efficiencies exceeding 10%. These TE advances are integrated with a high-performance microtechnology combustion reactor based on recent advances at Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation approach lead directly to system efficiency?Cpower maps defining potentially available optimal system operating conditions and regimes. Further, it is shown that, for a given fuel flow rate, there exists a combination of recuperative effectiveness and hot-side heat exchanger effectiveness that provides a higher specific power output from the TE modules. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high-performance TE devices, and microtechnologies to produce a compact, lightweight, combustion-driven TE power system prototype that operates on common fuels.  相似文献   

20.
This paper describes the development and testing of a thermoelectric generator (TEG) using the exhaust heat of a 50-kW stationary diesel power plant. The generator consists of six units that represent primary generators for each diesel engine cylinder. Each primary generator comprises five sections with gas heat exchangers, thermoelectric modules, and liquid heat exchangers. The sections were optimized for the exhaust gas operating temperatures. The generator electric power was 2.1 kW at rated power of 2.2 kW, corresponding to 4.4% of the diesel plant electric power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号