首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An auto-I/Q calibrated CMOS transceiver for 802.11g   总被引:1,自引:0,他引:1  
The CMOS transceiver IC exploits the superheterodyne architecture to implement a low-cost RF front-end with an auto-I/Q calibration function for IEEE 802.11g. The transceiver supports I/Q gain and phase mismatch auto tuning mechanisms at both the transmitting and receiving ends, which are able to reduce the phase mismatch to within 1/spl deg/ and gain mismatch to 0.1dB. Implemented in a 0.25 /spl mu/m CMOS process with 2.7 V supply voltage, the transceiver delivers a 5.1 dB receiver cascade noise figure, 7 dBm transmit, and a 1 dB compression point.  相似文献   

2.
This paper presents a single-chip dual-band CMOS direct-conversion transceiver fully compliant with the IEEE 802.11a/b/g standards. Operating in the frequency ranges of 2.412-2.484 GHz and 4.92-5.805 GHz (including the Japanese band), the fractional-N PLL based frequency synthesizer achieves an integrated (10 kHz-10 MHz) phase noise of 0.54/spl deg//1.1/spl deg/ for 2/5-GHz band. The transmitter error vector magnitude (EVM) is -36/-33 dB with an output power level higher than -3/-5dBm and the receiver sensitivity is -75/-74 dBm for 2/5-GHz band for 64QAM at 54 Mb/s.  相似文献   

3.
A 5-GHz transceiver comprising the RF and analog circuits of an IEEE 802.11a-compliant WLAN has been integrated in a 0.25-/spl mu/m CMOS technology. The IC has 22-dBm maximum transmitted power, 8-dB overall receive-chain noise figure and -112-dBc/Hz synthesizer phase noise at 1-MHz frequency offset.  相似文献   

4.
A single-chip dual-band tri-mode CMOS transceiver that implements the RF and analog front-end for an IEEE 802.11a/b/g wireless LAN is described. The chip is implemented in a 0.25-/spl mu/m CMOS technology and occupies a total silicon area of 23 mm/sup 2/. The IC transmits 9 dBm/8 dBm error vector magnitude (EVM)-compliant output power for a 64-QAM OFDM signal. The overall receiver noise figure is 5.5/4.5 dB at 5 GHz/2.4 GHz. The phase noise is -105 dBc/Hz at a 10-kHz offset and the spurs are below -64 dBc when measured at the 5-GHz transmitter output.  相似文献   

5.
A fully integrated CMOS direct-conversion 5-GHz transceiver with automatic frequency control is implemented in a 0.18-/spl mu/m digital CMOS process and housed in an LPCC-48 package. This chip, along with a companion baseband chip, provides a complete 802.11a solution The transceiver consumes 150 mW in receive mode and 380 mW in transmit mode while transmitting +15-dBm output power. The receiver achieves a sensitivity of better than -93.7dBm and -73.9dBm for 6 Mb/s and 54 Mb/s, respectively (even using hard-decision decoding). The transceiver achieves a 4-dB receive noise figure and a +23-dBm transmitter saturated output power. The transmitter also achieves a transmit error vector magnitude of -33 dB. The IC occupies a total die area of 11.7 mm/sup 2/ and is packaged in a 48-pin LPCC package. The chip passes better than /spl plusmn/2.5-kV ESD performance. Various integrated self-contained or system-level calibration capabilities allow for high performance and high yield.  相似文献   

6.
A single-chip dual-band 5.15-5.35-GHz and 2.4-2.5-GHz zero-IF transceiver for IEEE 802.11a/b/g WLAN systems is fabricated on a 0.18-/spl mu/m CMOS technology. It utilizes an innovative architecture including feedback paths that enable digital calibration to help eliminate analog circuit imperfections such as transmit and receive I/Q mismatch. The dual-band receive paths feature a 4.8-dB (3.5-dB) noise figure at 5.25 GHz (2.45 GHz). The corresponding sensitivity at 54 Mb/s operation is -76 dBm for 802.11a and -77 dBm for 802.11g, both referred at the input of the chip. The transmit chain achieves output 1-dB compression at 6 dBm (9 dBm) at 5 GHz (2.4 GHz) operation. Digital calibration helps achieve an error vector magnitude (EVM) of -33 dB (-31 dB) at 5 GHz (2.4 GHz) while transmitting -4 dBm at 54Mb/s. The die size is 19.3 mm/sup 2/ and the power consumption is 260 mW for the receiver and 320 mW (270 mW) for the transmitter at 5 GHz (2.4 GHz) operation.  相似文献   

7.
The design and performance of two new miniature 360/spl deg/ continuous-phase-control monolithic microwave integrated circuits (MMICs) using the vector sum method are presented. Both are implemented using commercial 0.18-/spl mu/m CMOS process. The first phase shifter demonstrates all continuous phase and an insertion loss of 8 dB with a 37-dB dynamic range from 15 to 20 GHz. The chip size is 0.95 mm /spl times/ 0.76 mm. The second phase shifter can achieve all continuous phase and an insertion loss of 16.2 dB with a 38.8-dB dynamic range at the same frequency range. The chip size is 0.71 mm /spl times/ 0.82 mm. To the best of the authors' knowledge, these circuits are the first demonstration of microwave CMOS phase shifters using the vector sum method with the smallest chip size for all MMIC phase shifters with 360/spl deg/ phase-control range above 5 GHz reported to date.  相似文献   

8.
The frequency-dependent attenuation of the transmission lines between chips and printed circuit boards, for example, is an obstacle to improving the performance of a system enhanced with LSI technology scaling. This is because large frequency-dependent attenuation results in poor eye-opening performance and a high bit-error rate in data transmission. This paper presents a 5-Gb/s 10-m 28AWG cable transceiver fabricated by using 0.13-/spl mu/m CMOS technology. In this transceiver, a continuous-time post-equalizer, with recently developed no-feedback-loop high-speed analog amplifiers, can handle up to 9dB of frequency-dependent attenuation in cables and also achieve an 18-dB improvement in the attenuation (27dB total improvement) by using pre- and post-equalization techniques in combination.  相似文献   

9.
A quadrature fourth-order, continuous-time, /spl Sigma//spl Delta/ modulator with 1.5-b quantizer and feedback digital-to-analog converter (DAC) for a universal mobile telecommunication system (UMTS) receiver chain is presented. It achieves a dynamic range of 70 dB in a 2-MHz bandwidth and the total harmonic distortion is -74 dB at full-scale input. When used in an integrated receiver for UMTS, the dynamic range of the modulator substantially reduces the need for analog automatic gain control and its tolerance of large out-of-band interference also permits the use of only first-order prefiltering. An IC including an I and Q /spl Sigma//spl Delta/ modulator, phase-locked loop, oscillator, and bandgap dissipates 11.5 mW at 1.8 V. The active area is 0.41 mm/sup 2/ in a 0.18-/spl mu/m 1-poly 5-metal CMOS technology.  相似文献   

10.
A dual-band trimode radio fully compliant with the IEEE 802.11a, b, and g standards is implemented in a 0.18-/spl mu/m CMOS process and packaged in a 48-pin QFN package. The transceiver achieves a receiver noise figure of 4.9/5.6 dB for the 2.4-GHz/5-GHz bands, respectively, and a transmit error vector magnitude (EVM) of 2.5% for both bands. The transmit output power is digitally controlled, allowing per-packet power control as required by the forthcoming 802.11 h standard. A quadrature accuracy of 0.3/spl deg/ in phase and 0.05 dB in amplitude is achieved through careful analysis and design of the I/Q generation parts of the local oscillator. The local oscillators achieve a total integrated phase noise of better than -34 dBc. Compatibility with multiple baseband chips is ensured by flexible interfaces toward the A/D and D/A converters, as well as a calibration scheme not requiring any baseband support. The chip passes /spl plusmn/2 kV human body model ESD testing on all pins, including the RF pins. The total die area is 12 mm/sup 2/. The power consumption is 207 mW in the receive mode and 247 mW in the transmit mode using a 1.8-V supply.  相似文献   

11.
A low-power 2.4-GHz transmitter/receiver CMOS IC   总被引:1,自引:0,他引:1  
A 2.4-GHz CMOS receiver/transmitter incorporates circuit stacking and noninvasive baseband filtering to achieve a high sensitivity with low power dissipation. Using a single 1.6-GHz local oscillator, the transceiver employs two upconversion and downconversion stages while providing on-chip image rejection filtering. Realized in a 0.25-/spl mu/m digital CMOS technology, the receiver exhibits a noise figure of 6 dB and consumes 17.5 mW from a 2.5-V supply, and the transmitter delivers an output power of 0 dBm with a power consumption of 16 mW.  相似文献   

12.
This paper describes a single-chip CMOS quad-band (850/900/1800/1900 MHz) RF transceiver for GSM/GPRS applications. It is the most important design issue to maximize resource sharing and reuse in designing the multiband transceivers. In particular, reducing the number of voltage-controlled oscillators (VCOs) required for local oscillator (LO) frequency generation is very important because the VCO and phase-locked loop (PLL) circuits occupy a relatively large area. We propose a quad-band GSM transceiver architecture that employs a direct conversion receiver and an offset PLL transmitter, which requires only one VCO/PLL to generate LO signals by using an efficient LO frequency plan. In the receive path, four separate LNAs are used for each band, and two down-conversion mixers are used, one for the low bands (850/900 MHz) and the other for the high bands (1800/1900 MHz). A receiver baseband circuit is shared for all four bands because all of their channel spaces are the same. In the transmit path, most of the building blocks of the offset PLL, including a TX VCO and IF filters, are integrated. The quad-band GSM transceiver that was implemented in 0.25-/spl mu/m CMOS technology has a size of 3.3/spl times/3.2 mm/sup 2/, including its pad area. From the experimental results, we found that the receiver provides a maximum noise figure of 2.9 dB and a minimum IIP3 of -13.2dBm for the EGSM 900 band. The transmitter shows an rms phase error of 1.4/spl deg/ and meets the GSM spectral mask specification. The prototype chip consumes 56 and 58 mA at 2.8 V in the RX and TX modes, respectively.  相似文献   

13.
A design methodology of a CMOS linear transconductor for low-voltage and low-power filters is proposed in this paper. It is applied to the analog baseband filter used in a transceiver designed for wireless sensor networks. The transconductor linearization scheme is based on regulating the drain voltage of triode-biased input transistors through an active-cascode loop. A third-order Butterworth low-pass filter implemented with this transconductor is integrated in a 0.18-/spl mu/m standard digital CMOS process. The filter can operate down to 1.2-V supply voltage with a cutoff frequency ranging from 15 to 85 kHz. The 1% total harmonic distortion dynamic range measured at 1.5 V for 20-kHz input signal and 50-kHz cutoff frequency is 75 dB, while dissipating 240 /spl mu/W.  相似文献   

14.
A 1.8-V 15-bit 40-MSample/s CMOS pipelined analog-to-digital converter with 90-dB spurious-free dynamic range (SFDR) and 72-dB peak signal-to-noise ratio (SNR) over the full Nyquist band is presented. Its differential and integral nonlinearities are 0.25 LSB and 1.5 LSB, respectively, and its power consumption is 400 mW. This performance is enabled by digital background calibration of internal digital-to-analog converter (DAC) noise and interstage gain errors. The calibration achieves improvements of better than 12 dB in signal-to-noise plus distortion ratio and 20 dB in SFDR relative to the case where calibration is disabled. Other enabling features of the prototype integrated circuit (IC) include a low-latency, segmented, dynamic element-matching DAC, distributed passive input signal sampling, and asymmetric clocking to maximize the time available for the first-stage residue amplifier to settle. The IC is realized in a 0.18-/spl mu/m mixed-signal CMOS process and has a die size of 4mm/spl times/5 mm.  相似文献   

15.
A 3-6 GHz CMOS broadband low noise amplifier (LNA) for ultra-wideband (UWB) radio is presented. The LNA is fabricated with the 0.18 /spl mu/m 1P6M standard CMOS process. Measurement of the CMOS LNA is performed using an FR-4 PCB test fixture. From 3 to 6 GHz, the broadband LNA exhibits a noise figure of 4.7-6.7 dB, a gain of 13-16 dB, and an input/output return loss higher than 12/10 dB, respectively. The input P/sub 1 dB/ and input IP3 (IIP3) at 4.5 GHz are about -14 and -5 dBm, respectively. The DC supply is 1.8 V.  相似文献   

16.
A micro-power complementary metal oxide semiconductor (CMOS) low-noise amplifier (LNA) is presented based on subthreshold MOS operation in the GHz range. The LNA is fabricated in an 0.18-/spl mu/m CMOS process and has a gain of 13.6 dB at 1 GHz while drawing 260 /spl mu/A from a 1-V supply. An unrestrained bias technique, that automatically increases bias currents at high input power levels, is used to raise the input P1dB to -0.2 dBm. The LNA has a measured noise figure of 4.6 dB and an IIP3 of 7.2 dBm.  相似文献   

17.
A CMOS gyrator low-IF filter for a dual-mode Bluetooth/ZigBee transceiver   总被引:4,自引:0,他引:4  
A low-IF polyphase channel filter for a dual-mode Bluetooth/Zigbee transceiver is described. Implemented in a standard 0.18-/spl mu/m CMOS process, the filter has a fifth-order 0.5-dB equiripple bandpass response and employs novel transconductor and preamplifier designs. It consumes /spl les/1 mW and achieves image band rejection /spl ges/44 dB, input referred noise of /spl les/52.2 /spl mu/Vrms and input referred third-order intermodulation intercept of /spl ges/20 dBVp, which gives a spurious-free dynamic range of /spl ges/68.4 dB. Chip area including its tuning circuit is 0.23 mm/sup 2/.  相似文献   

18.
This 0.5-/spl mu/m SiGe BiCMOS polar modulator IC adds EDGE transmit capability to a GSM transceiver IC without any RF filters. Envelope information is extracted from the transmit IF and applied to the phase-modulated carrier in an RF variable gain amplifier which follows the integrated transmit VCO. The dual-band IC supports all four GSM bands. In EDGE mode, the IC produces more than 1 dBm of output power with more than 6 dB of margin to the transmit spectrum mask and less than 3% rms phase error. In GSM mode, more than 7 dBm of output power is produced with noise in the receive band less than -164 dBc/Hz.  相似文献   

19.
Scaling of CMOS technologies has a great impact on analog design. The most severe consequence is the reduction of the voltage supply. In this paper, a low voltage, low power, AC-coupled folded-switching mixer with current-reuse is presented. The main advantages of the introduced mixer topology are: high voltage gain, moderate noise figure, moderate linearity, and operation at low supply voltages. Insight into the mixer operation is given by analyzing voltage gain, noise figure (NF), linearity (IIP3), and DC stability. The mixer is designed and implemented in 0.18-/spl mu/m CMOS technology with metal-insulator-metal (MIM) capacitors as an option. The active chip area is 160 /spl mu/m/spl times/200 /spl mu/m. At 2.4 GHz a single side band (SSB) noise figure of 13.9 dB, a voltage gain of 11.9 dB and an IIP3 of -3 dBm are measured at a supply voltage of 1 V and with a power consumption of only 3.2 mW. At a supply voltage of 1.8 V, an SSB noise figure of 12.9 dB, a voltage gain of 16 dB and an IIP3 of 1 dBm are measured at a power consumption of 8.1 mW.  相似文献   

20.
A 64-MHz clock rate sigma-delta (/spl Sigma//spl Delta/) analog-to-digital converter (ADC) with -105-dB intermodulation distortion (IMD) at a 1.5-MHz signal frequency is reported. A linear replica bridge sampling network enables the ADC to achieve high linearity for high signal frequencies. Operating at an oversampling ratio of 29, a 2-1-1 cascade with a 2-b quantizer in the last stage reduces the quantization noise level well below that of the thermal noise. The measured signal-to-noise and distortion ratio (SNDR) in 1.1-MHz bandwidth is 88 dB, and the spurious-free-dynamic-range (SFDR) is 106 dB. The modulator and reference buffers occupy a 2.6-mm/sup 2/ die area and have been implemented with thick oxide devices, with minimum channel length of 0.35 /spl mu/m, in a dual-gate 0.18-/spl mu/m 1.8-V single-poly five-metal (SP5M) digital CMOS process. The power consumed by the ADC is 230 mW, including the decimation filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号