首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
页岩气井压裂技术及其效果评价   总被引:1,自引:0,他引:1  
页岩气作为一种重要的非常规能源,目前只有美国和加拿大取得商业开发成功。页岩气商业开发成功主要取决于水平钻井和压裂技术的突破。目前页岩气井常用的压裂技术有多级压裂、清水压裂、缝网压裂、重复压裂和同步压裂等。此外CO_2和N_2泡沫压裂也日益得到人们的重视。从压裂液、压裂方式和裂缝监测技术及效果评价方面对页岩气压裂技术进行了介绍。  相似文献   

2.
页岩气压裂技术及其效果评价   总被引:2,自引:0,他引:2  
页岩气作为一种重要的非常规能源,目前只有美国和加拿大取得商业开发成功。页岩气商业开发成功主要取决于水平钻井和压裂技术的突破。目前常用的技术有多级压裂、清水压裂、缝网压裂重复压裂和同步压裂等。此外CO2和N2泡沫压裂也日益得到人们的重视。该文从压裂液、压裂方式和裂缝监测技术及效果评价方面对页岩气压裂技术进行了介绍。  相似文献   

3.
页岩气开发的兴起与发展,使得井下微地震监测技术得到了更好的发展前景,原因在于页岩气开发过程中,会应用水力压裂技术这一关键技术,压裂完成后,必须认真分析、评估裂缝空间展布情况、水力压裂效果,而井下微地震监测技术正是分析、评估裂缝空间展布情况、水力压裂效果的一个有效手段。本文笔者主要对井下微地震监测技术的原理及其应用进行了分析,以供参考。  相似文献   

4.
通过井下微地震监测可以获得页岩气井压裂过程中水力裂缝的展布方向、波及长度和地层破裂能量,从而指导压裂方案的实时调整,增大压裂改造体积。为此,威202井区5个平台进行页岩气“井工厂”压裂施工时,应用井下微地震监测技术进行了裂缝监测。在介绍井下微地震监测技术基本测量原理的基础上,以威202井区A平台6口井的应用为例,详细介绍了该技术在有效识别地层中潜在天然裂缝、监测暂堵转向体积压裂效果、指导射孔参数优化等方面的机理与效果。研究表明,应用井下微地震监测技术可以增大页岩气储层改造体积,提高储层均匀改造程度,这对于页岩气的经济有效开发具有重要作用。   相似文献   

5.
我国四川盆地页岩气资源丰富,经过10余年探索,中国石油在川南地区实现页岩气的规模效益开发,掌握了页岩气勘探开发核心技术,页岩气压裂理论、技术和方法从无到有,从单一到配套,实现了从跟跑到部分领跑的全面进步。2010年至今,川南地区页岩气压裂经历了先导试验、自主研发、系统完善、技术升级4个发展阶段,形成了以体积压裂工艺技术、体积压裂配套技术、压裂裂缝监测与压裂后效果评价技术、工厂化压裂技术为核心的3500m以浅页岩气水平井体积压裂技术体系。研究总结了现阶段页岩气压裂技术进展和应用成效,分析了已有技术的局限性、川南地区压裂难点,提出需要针对不同埋深的页岩储层地质特征开展针对性的压裂理论深化研究与技术攻关,需攻关3500m以浅老区提高采收率、3500m以浅新井提高产量和储量动用程度、3500m以深页岩气提高单井产量及复杂防控等领域,以支撑未来页岩气高效开发。  相似文献   

6.
<正>日前,记者在涪陵页岩气公司技术中心了解到,一项新型微地震裂缝监测技术——井中微地震裂缝监测技术首次在涪陵页岩气田应用,为涪陵页岩气开发再添利器。以往,涪陵页岩气公司采用的是地面微地震裂缝监测技术,通过地面采集压裂引起的微小地震波,分析确定裂缝参数信息,描述裂缝破裂过程,评价压裂效果。而井中微地震裂缝监测技术与地面微地震裂缝监测技术相比,可以更近距离、更加准确、更加清晰地反映压裂过程中地层裂缝的缝长、缝高、裂缝实时延伸等情况,以便技术人员更精确分析研究地层改造情况,实时评估压裂效  相似文献   

7.
对中国页岩气压裂工程技术发展和工程管理的思考与建议   总被引:1,自引:0,他引:1  
中国页岩气的资源禀赋与北美地区存在着较大的差异,由此决定了不能生搬硬套后者页岩气革命的经验和做法。为了实现中国页岩气资源的规模有效开发,在借鉴北美页岩气开发先进理念的基础上,结合自身页岩气资源的实际情况,对我国页岩气增产改造技术现状进行了梳理与总结,进而对页岩气压裂关键技术发展方向与加强工程管理提出了建议:①融合了地质、工程及生产信息的数据体是页岩气勘探开发与生产各环节设计与优化的基础,应打破"数据孤岛",深入数据挖潜,实现数据的高效应用,促进地质工程一体化数据融合;②应在考虑页岩岩石力学各向异性特征与地应力特征的基础上,发展并完善适用于页岩的地质力学测试评价方法和技术,提升地质工程一体化方案设计水平;③需要研发全可溶桥塞,提高分段压裂作业效率,降低施工风险,助力页岩气开发降本增效;④工程管理方面尚有很大的提升空间,值得探索和研究,油气行业和油气公司应抓住这一重要的战略机遇期,积极优化现有的工程管理模式,寻找提质增效的最佳途径。结论认为,我国页岩气资源的勘探开发目前还处于起步阶段,技术与装备、生产管理、勘探开发效果、政策法规等与国外存在着显著的差距,亟需结合自身资源条件,对美国页岩气革命水力压裂经验与管理理念进行借鉴、消化、吸收与再创新,进而探索出一条符合中国实际的页岩气开发可行之路。  相似文献   

8.
连续油管技术在页岩气勘探开发中应用前景   总被引:1,自引:0,他引:1  
页岩气存在于盆地沉积层中,由于聚集机理特殊,不能用常规方法开采。连续油管技术具有许多优点,已在钻井、压裂、冲砂等领域得到应用。在页岩气开采中采用连续油管技术,即,欠平衡钻井、水平井拖动酸化、压裂等,将使这些能源具有开发价值。美国的开发实践也证明了该技术的可行性,我国应加强连续油管设备研究及在页岩气勘探开发中的应用研究。  相似文献   

9.
页岩属于低孔低渗储层,其开发难度非常大,90%的页岩气井需经过储层改造才能获得较为理想的产气效果,压裂技术是进行储层改造、提高产能的最主要手段。为了全面系统地了解各种压裂技术,通过大量的文献调研及整理研究,简单介绍了页岩气压裂技术的发展历程,并详细论述了目前应用于页岩储层改造的主要压裂技术的理论基础、技术特点、适用性及各种压裂工艺间的差异性。同时,介绍了几种近些年发展产生的新型压裂技术,包括混合压裂技术、纤维压裂技术、通道压裂技术,以及在页岩储层压裂中的应用情况及展望。针对我国页岩气勘查开发工作刚刚起步,施工经验不足的现实情况,了解各种压裂技术特点,寻找适合我国页岩储层的压裂技术,对我国页岩气勘查开发具有重要意义。  相似文献   

10.
张然  李根生  杨林  刘颂  田守增 《石油机械》2011,39(Z1):117-120
页岩气是具有商业价值的非常规天然气,对其开发和利用越来越多地得到世界各国的重视。页岩气的储藏特性及地质环境决定了只有采取储层改造措施才能实现增产和稳产。目前的增产措施主要以压裂技术为主,根据不同的地质环境和技术特点采取不同的压裂技术。阐述了国内外页岩气的开采现状,对现有的增产措施即水平井技术、超临界CO2技术、压裂技术(包括清水压裂、同步压裂、多级压裂、重复压裂和水力喷射压裂)以及微地震裂缝监测技术进行了分析,对我国页岩气增产技术进行了总结,并对下阶段的增产技术和措施作了展望。  相似文献   

11.
随着四川盆地页岩气勘探开发的持续深入,实施水平井分段压裂改造已成为页岩气这种非常规气藏有效开发的必要手段。针对四川长宁—威远国家级页岩气示范区水平井储层特点,结合套管固井完井方式,通过开展自主攻关与现场试验,在页岩气水平井压裂改造方面逐步形成了一套完整的技术系列,包括:新型复合桥塞分段工具、高效降阻滑溜水体系、优化分段设计技术、体积压裂工艺、连续油管钻磨技术、连续混配、连续供砂、连续作业技术、返排液重复利用技术等,从而实现了页岩气水平井储层改造的最优化体积和效果。应用结果表明:自主研发的页岩气水平井复合桥塞优化分段、滑溜水体积压裂工艺及工程配套技术,能够有效提高工程时效和增加井口产能,为页岩气水平井规模效益开发提供了技术保障,为下一步四川盆地页岩气工厂化压裂的实施提供了技术支撑。  相似文献   

12.
新型压裂技术在页岩气开发中的应用   总被引:3,自引:0,他引:3  
先进的压裂技术是页岩气藏得到商业开发的关键。目前页岩气藏压裂大多采用水基压裂液,存在清水用量巨大,回收、处理困难的问题。在分析清水压裂的特点和中国压裂条件的基础上,指出页岩气压裂的约束条件和发展方向。通过深入调研国外最新技术,从研发背景、施工工艺、技术特点和应用效果等方面介绍了新兴的混合压裂、纤维压裂、通道压裂、CO2压裂和液化石油气压裂技术,并针对中国页岩气开发现状进行适用性分析。认为清水压裂对于验证中国页岩气可采性和进行试探性开发具有不可替代的作用;新型压裂技术能够不同程度解决清水压裂的现存问题,这些技术的研究和应用价值将在中国水资源匮乏、环境污染严重、设备运输问题的现状和页岩气长期商业开发的实践中日益凸显;分析认为在引进国外技术的同时应加快新型压裂技术的自主研发和试验,这样才能尽早使中国页岩气的成功开发成为现实。  相似文献   

13.
<正>经过不懈努力,四川盆地页岩气勘探开发取得了以下五个方面的成果:1)初步形成页岩气勘探开发主体配套技术。通过攻关研究与技术引进相结合,突破了页岩气综合地质评价技术、页岩气开发优化技术、页岩气水平井钻完井技术、页岩气水平井体积压裂技术、页岩气压裂微地震监测技术、页岩气地面集输技术共六大技术系列,形成23项专项技术。  相似文献   

14.
中国石化页岩气工程技术进步及展望   总被引:1,自引:0,他引:1  
中国石化通过持续的攻关研究,形成了具有自主知识产权的页岩气工程配套技术,具备了页岩气水平井水平段长2 000 m、分段压裂20段以上的钻完井与压裂设计、施工能力,并实现了涪陵等地区页岩气资源勘探突破,促进了中国石化页岩气勘探开发进程。全面介绍了中国石化页岩气工程地质环境描述技术、优快钻井及井工厂技术、LVHS油基钻井液体系、SPF弹塑性水泥浆固井技术、分段压裂关键配套工具、滑溜水压裂液体系、页岩气水平井分段压裂技术和页岩气技术装备研发等技术及应用现状,并指出了未来页岩气工程技术的五大发展趋势。   相似文献   

15.
国外页岩气井水力压裂裂缝监测技术进展   总被引:6,自引:0,他引:6  
由于页岩气储层呈低渗物性特征,需要进行储层改造才能获得工业价值的天然气流。页岩气储层经过水力压裂产生的人工裂缝是页岩气产出的主要通道,通过裂缝监测手段可以确定裂缝的延伸特征,利用这些信息优化压裂设计,实现页岩气藏管理的优化。通过调研分析国外文献,可知目前国外常用的页岩气井水力压裂裂缝监测主要有直接近井筒裂缝监测、井下微地震监测方法、测斜仪监测和分布式声传感裂缝监测,对比分析了这几种裂缝监测方法的监测能力和适应性。在这些压裂监测技术中直接近井筒裂缝监测技术只作为补充技术,井下微地震裂缝监测是目前应用最广泛、最精确的方法,测斜仪裂缝监测的应用也比较广泛但无法用于深井,分布式声传感裂缝监测在2009年首次用于现场压裂监测还处于起步阶段。先进页岩气井水力压裂裂缝监测技术的应用大大增加了水力压裂增产措施的有效性和经济性。  相似文献   

16.
页岩气储层体积缝网压裂技术新进展   总被引:1,自引:0,他引:1  
体积缝网压裂是以在储层中形成大规模复杂裂缝网络为目的的压裂工艺技术,是低渗、特低渗页岩气储层实现工业开采最有效的增产措施。介绍了近期提出的同步压裂(或拉链式压裂)、交替压裂(或"德州两步跳"压裂)和改进拉链式压裂技术工艺原理及其实现方法,对比分析了其各自存在的优缺点,简要阐述了成功实现页岩气储层体积缝网压裂的关键辅助技术(清水压裂技术、微地震监测技术及参数优化方法等)。研究发现,改进拉链式压裂利用同步压裂和交替压裂优点的同时规避了它们各自的不足,使其压后效果相比于同步压裂和交替压裂更好,为页岩气的进一步开发提供了新思路。最后,针对目前尚存在的问题,分析了其可能原因并指出了未来发展方向,对我国页岩气高效开发具有重要指导意义。  相似文献   

17.
随着全球经济发展对油气需求的持续增长以及勘探开发技术的不断提高,非常规油气藏正逐步成为接替资源及勘探开发热点。在储层甜点预测技术、水平井钻完井技术、储层改造增产技术以及微地震监测技术日渐成熟的背景下,中国石油集团东方地球物理公司在理论研究与实际应用中总结出一套涉及多学科的综合地震地质工程一体化技术思路。本文主要描述了在四川盆地昭通页岩气示范区等地开展的基于微地震监测技术的地震地质工程一体化实践,取得了良好的应用效果,同时也证明该套技术具有推广价值。  相似文献   

18.
国内正逐渐开始对致密砂岩气、页岩气、煤层气等非常规油气藏进行勘探开发,针对这类非常规油气藏,多层段压裂改造是提高单井产量的必要手段.可钻式复合桥塞多层段压裂技术作为目前国内外进行页岩气藏等非常规油气藏开发使用的主体储层改造技术,该技术具有不受分段压裂层数限制、工具管柱简单、不易造成砂卡、解除封堵快捷、桥塞钻铣完后保证了井筒的畅通便于后续工艺管柱的下入等诸多的优点,文章从压裂工艺原理、技术关键和现场应用等几方面进行了分析.该技术在现场的成功应用取得了显著的增产效果,同时也为国内非常规油气藏的多层压裂改造提供了新的技术支撑及开发思路.  相似文献   

19.
井间微地震监测技术现场应用效果分析   总被引:2,自引:0,他引:2  
井间微地震监测技术的现场应用是通过监测注水过程中产生的微震波,可以确定出水驱前缘位置、优势注水方向、注水波及面积等资料;在水力压裂时,进而还可确定出裂缝分布的方位、长度、高度及地应力方向等地层参数.为油藏工程师进行方案优化、提高整体开发效果和采收率等提供依据.在简要介绍了井间微地震监测技术基本原理的基础上,结合地质动、静态资料,对微地震法在水驱前缘测试及压裂裂缝监测两方面在大庆油田的应用效果进行了分析.现场应用证明,井间微地震监测技术在油田动态分析及压裂效果评价等领域具有良好的应用前景.  相似文献   

20.
页岩气藏压裂技术及我国适应性分析   总被引:4,自引:2,他引:2  
我国对页岩气的研究与勘探开发还处于探索阶段,美国通过压裂等开发技术的进步,使页岩气的勘探开发步入大规模快速发展阶段。通过借鉴国外的页岩气藏压裂技术,结合我国四川盆地页岩气藏的储层特性及已有的压裂基础,分析我国页岩气藏压裂的适应性,指出压裂的约束条件。认为在引进国外技术的同时应加强理论研究,这样才能使我国的页岩气藏开发进入新的发展阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号