首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
采用高温固相法制备新型黄色荧光粉Sr_8ZnLu(PO_4)_7:Eu~(2+), Mn~(2+)。分别通过X射线衍射,扫描电镜和荧光光谱研究了材料的物相结构,形貌和发光性能。单掺Eu~(2+)样品在250~450 nm范围内出现宽峰吸收,预示着该材料可被近紫外芯片有效激发。Eu~(2+)发射光谱峰值位于520 nm,发光猝灭的机理被确定为偶极-偶极相互作用。在Eu~(2+)-Mn~(2+)共掺样品中荧光粉展现400~700 nm范围可调的宽峰发射。研究表明Sr_8ZnLu(PO_4)_7:Eu~(2+), Mn~(2+)黄色荧光粉在近紫外芯片激活的白光LED领域有潜在应用。  相似文献   

2.
采用高温固相法合成了Eu~(3+)激活的Ba_3La_6(SiO_4)_6红色荧光粉并对其发光性质进行了研究。XRD谱显示,合成样品为纯相Ba_3La_6(SiO_4)_6晶体。样品的激发光谱由一系列宽谱组成,峰值分别位于300、364、384、395、416和466nm,其激发主峰位于395nm。在395nm激发下,荧光粉在619nm(~5D_0→~7F_2)处有很强的发射。研究了不同Eu~(3+)掺杂浓度对样品发射光谱的影响。结果显示,随Eu~(3+)掺杂量的增大,发光强度先增大后减小。Eu~(3+)掺杂摩尔分数为13%时,出现浓度淬灭,其浓度淬灭机理为电偶极-电偶极相互作用。研究了不同Bi~(3+)掺杂量对Ba_3La_6(SiO_4)_6:Eu~(3+)发射光谱及色坐标的影响。Bi~(3+)掺杂样品中存在Bi~(3+)→Eu~(3+)的能量传递。  相似文献   

3.
采用液相沉淀法制备了近紫外光激发的颜色可调Sr_2SiO_4:0.06Gd~(3+),0.06Tb~(3+)、Sr_2SiO_4:0.06Gd~(3+),0.06Eu~(3+)和Sr_2SiO_4:0.06Gd~(3+),0.03Tb~(3+),0.03Eu~(3+)荧光粉,利用XRD、SEM、荧光光谱以及色坐标分析研究了所制备荧光粉的结构、形貌和发光性能。XRD分析表明,Sr_2SiO_4:0.06Gd~(3+),0.06Tb~(3+)、Sr_2SiO_4:0.06Gd~(3+),0.06Eu~(3+)和Sr_2SiO_4:0.06Gd~(3+),0.03Tb~(3+),0.03Eu~(3+)荧光粉样品属单斜晶系。荧光光谱分析表明,Sr_2SiO_4:Gd~(3+),Tb~(3+),Eu~(3+)的激发光谱包括200~300nm的宽带吸收峰和Tb~(3+)、Eu~(3+)的系列吸收峰。在243nm、354nm紫外光激发下,Sr_2SiO_4:0.06Gd~(3+),0.06Tb~(3+)的发射光谱由Tb~(3+)的~5D_4→~7F6(490nm,蓝绿光)、~5D_4→~7F_5(548nm,绿光)和~5D_4→~7F4(588nm,黄光)跃迁发射峰组成。在243nm、364nm紫外光激发下,Sr_2SiO_4:0.06Gd~(3+),0.06Eu~(3+)的发射光谱由Eu~(3+)的~5D_0→~7F_1(591nm,橙光)、~5D_0→~7F2(614nm,红光)、~5D_0→~7F_3(652nm,红光)跃迁发射峰组成。在243nm、252nm、364nm紫外光激发下,Sr_2SiO_4:0.06Gd~(3+),0.03Tb~(3+),0.03Eu~(3+)的发射光谱由Tb~(3+)的~5D_4→~7F_6(490nm,蓝绿光)、~5D_4→~7F_5 (548nm,绿光)、~5D_4→~7F_4(588nm,黄光)和Eu~(3+)的~5D_0→~7F_1(591nm,橙光)、~5D_0→~7F_2(614nm,红光)、~5D_0→~7F_3(652nm,红光)跃迁发射峰组成。色坐标分析表明,Sr_2SiO_4:0.06Gd~(3+),0.03Tb~(3+),0.03Eu~(3+)是很好的近紫外光激发的三色发光荧光粉。  相似文献   

4.
采用高温固相反应法合成了掺Dy~(3+)的Ba_2La_8(SiO_4)_6O_2荧光粉,并根据其X射线衍射谱和光致发光光谱对晶体结构和发光性能进行了系统研究。Ba_2La_8(SiO_4)_6O_2∶Dy~(3+)荧光粉具有磷灰石结构,Dy~(3+)进入晶格后并未引起晶体结构的显著变化。该荧光粉可被近紫外光或蓝光有效激发,在478 nm和571 nm附近产生较强发射峰,呈现出接近白光的黄色光。Ba_2La_8(SiO_4)_6O_2基质中,最佳Dy~(3+)掺杂浓度为1%。促成浓度猝灭效应的能量传递机制为激活剂间的电偶极-电偶极相互作用。制备荧光粉具有较好的热稳定性,150℃下样品的发光强度保留了室温下的69.6%,其热激活能为0.24 eV。本工作表明,Ba_2La_8(SiO_4)_6O_2∶Dy~(3+)荧光粉具有在近紫外或蓝光激发的白光LED照明器件中的应用潜力。  相似文献   

5.
采用高温固相法在强还原气氛下合成了Ca_(8–x)Mg(SiO_4)_4Cl_2:xEu~(2+)氯硅酸镁钙荧光粉。通过X射线衍射、荧光光谱和扫描电子显微镜对样品的晶体结构和发光特性进行了表征,探讨了Eu~(2+)掺杂量和助熔剂对发光性能的影响。结果表明:该荧光粉属于面心立方结构、Fd3空间群。样品的激发光谱和发射光谱均为宽带谱,位于451~463 nm范围的激发峰强度最大;在波长为458 nm蓝光激发下样品发射蓝绿光,发射峰在508~511 nm范围。当Eu~(2+)掺杂量为0.13时样品的发光强度最佳;分别加入摩尔分数为0.2%的Ca F_2、Ba F_2、Ba Cl_2助熔剂,能提高荧光粉的激发和发射光谱强度,且加入Ba Cl_2制备的荧光粉的发射光谱强度提高12%。考察了该材料在白光LED中的封装应用性能,结果显示蓝绿色荧光粉能够有效提升白光LED的显色性,显色指数达到95以上。  相似文献   

6.
采用高温固相法制备了双色可调荧光粉MgY_2Al_4SiO_(12):Eu~(2+),Ce~(3+),并对其晶体结构和发光特性进行了研究。在340 nm紫外光激发下荧光粉的发射光谱由两个谱带组成,以445 nm为主峰的蓝光发射带归属于Eu~(2+)的4f~65d~1→4f~7能级跃迁,峰值位于565 nm的黄光发射带则对应于Ce~(3+)的5d→4f(~2F_(2/7),~2F_(2/5))跃迁。根据Dexter共振能量传递理论和Reisfeld近似计算得到Eu~(2+),Ce~(3+)之间存在电偶极-电偶极能量传递过程。当Eu~(2+)和Ce~(3+)的掺杂浓度分别为0.01和0.06时,荧光粉的色坐标位置落在黄绿光区域,并可以通过改变基质中Eu~(2+)和Ce~(3+)的摩尔比来调节荧光粉的色坐标。MgY_2Al_4SiO_(12):Eu~(2+),Ce~(3+)是一种适用于紫外芯片的新型双色可调谐白光LED用荧光粉。  相似文献   

7.
采用高温固相法合成了一系列NaBaSi_xP_(1-x)O_4:Eu~(3+)橙红色荧光粉。表征了荧光粉的晶体结构和发光性能。考察了煅烧温度和Si~(4+)掺杂量对荧光粉结构和发光性能的影响。结果表明:掺杂Si~(4+)对荧光粉的晶型没有明显影响,但是导致了晶格膨胀。750℃煅烧时基质已形成NaBaPO_4相,晶型为六方晶系,荧光粉发射峰强度最强。激发光谱由200~280 nm的宽带和310~500 nm的一系列尖峰组成,分别对应于O~(2–)→Eu~(3+)电荷迁移带和Eu~(3+)的f→f能级跃迁吸收,最强激发峰位于393 nm左右,与近紫外LED芯片的发射光谱匹配。在393 nm近紫外光激发下,最强发射峰和次强发射峰分别位于红光616 nm和橙光591 nm附近,分别属于Eu~(3+)的~5D_0→~7F_2和~5D_0→~7F_1特征跃迁。NaBa_(0.92)Si_xP_(1–x)O_4:0.08Eu~(3+)中Si~(4+)的最佳掺杂量为0.02 mol,Na Ba_(0.92)Si_(0.02)P_(0.98)O_4:0.08Eu~(3+)样品在616和591 nm附近的发射强度比单掺杂Eu~(3+)的样品分别提高了66.6%和63.6%。  相似文献   

8.
采用高温固相法制备Sr6La4(SiO4)2(PO4)4O2:xEu^2+,yMn^2+荧光粉。通过X射线粉末衍射和结构精修研究了其物相组成和晶体结构以及该荧光粉的激发光谱、发射光谱、漫反射光谱、荧光热稳定性等发光性能。结果表明:该荧光粉具有磷灰石结构,Eu^2+和Mn^2+可占据结构中的2种阳离子格位。当Eu2+的掺杂量为1%(摩尔分数)、Mn^2+的掺杂量为2%时,此荧光粉发光性能最好;荧光粉的发射光谱为450~550 nm的宽发射带,峰值位于478 nm,其激发光谱为220~400 nm的宽激发带,峰值位于302 nm,其色坐标值为(0.203 5,0.307 8);Mn^2+的掺杂有效的促进了荧光粉对近紫外光区域的吸收。当温度提升至150℃,Sr6La4(SiO4)2(PO4)4O2:0.01Eu^2+和Sr6La4(SiO4)2(PO4)4O2:(0.01Eu^2+,0.02Mn^2+)荧光粉的发射光谱强度分别为室温的34.46%和51.79%;Mn^2+的掺杂显著提升了其热稳定性。  相似文献   

9.
采用凝胶-燃烧法,用尿素做燃烧剂合成Sr_3YAl_2O_(7.5):x%Eu~(3+)荧光粉样品,在焙烧温度850℃下合成单一的纯相。通过激发光谱、发射光谱、XRD对Sr_3YAl_2O_(7.5)∶x%Eu~(3+)荧光粉的组成和发光性质进行研究。分析结果表示其激发光谱主要有210nm到350nm之间宽带激发峰和350nm到452nm之间窄带吸收峰组成,在270 nm紫外激发下,其发射光谱主要由591 nm和612nm的峰组成,得到其Sr_3YAl_2O_(7.5):x%Eu~(3+)红色荧光粉。  相似文献   

10.
以水合硝酸镧、水合硝酸铕、硬脂酸和水合钼酸钠为反应物,采用溶剂热法合成了Eu~(3+)离子掺杂的La_2(MoO_4)_3:Eu~(3+)纳米红色荧光粉。利用TEM、XRD、FL对其形貌、结构和发光性能进行了表征。考察了溶剂种类、反应时间、反应温度、Eu~(3+)掺杂量对产物微观形貌和发光性能的影响。结果表明:以异丙醇为溶剂、反应温度180℃、反应时间12 h条件下,得到的样品结晶度高、分散性好、形貌均一,粒径小于100 nm。该样品可被近紫外光(波长391.0 nm)和蓝光(波长462.5 nm)有效激发,最大发射波长位于613.5 nm,为窄带的红光。La_2(MoO_4)_3:Eu~(3+)的发光强度与Eu~(3+)离子掺杂量有关,其最佳掺杂摩尔分数xEu~(3+)=0.15{xEu~(3+)=n(Eu~(3+))/[n(Eu~(3+))+n(La~(3+))]}。  相似文献   

11.
采用自助熔剂法,制备出了F-掺杂的不刺眼(Ca_(0.45)Sr_(0.5)Eu_(0.05))_7(SiO_3)_6Cl_(2-2x)F_(2x)(0.5≤x≤0.9)LED用单基质白光荧光粉;利用XRD、SEM、荧光光谱等测试手段对该类荧光粉的结构、形貌及发光性能进行表征。研究表明:通过自助熔剂法合成得到了高结晶性的单基质白光荧光粉;在紫外光激发下有两个发射峰,峰位分别位于466nm和578nm左右,发光范围涵盖整个可见光区;分析认为两个发射带归结为处于两个不同发光中心上的Eu~(2+)的5d-4f发射;当掺杂量x为0.5、0.7、0.9时,在338nm激发下荧光粉均发白光。  相似文献   

12.
《陶瓷》2017,(5)
以分析纯SrCO_3、CaCO_3、SiO_2、Eu_2O_3、Dy_2O_3为原料,采用低温预烧-还原气氛高温固相反应法制备了Eu~(2+)、Dy~(3+)共掺杂Sr_(2-x)Ca_xSiO_4∶Eu~(2+),Dy~(3+)(0≤x2)陶瓷粉体,系统研究了Sr/Ca原子比、Eu、Dy掺量对所得粉体结晶特性、光致发光、热致发光、余辉性能的影响。结果表明,共掺杂粉体主晶相为斜方晶系α-Sr_2SiO_4,且随着Ca~(2+)浓度的增加,晶体结构发生畸变,衍射峰向高角度偏移。Dy~(3+)掺杂能够显著提高光致发光性能,最佳掺杂浓度为0.04mol%。从热释光与余辉分析表明,Ca~(2+)掺杂可引入新的陷阱能级,增强余辉发光,当Ca~(2+)掺杂浓度低于0.8%时,以Eu~(2+)取代Sr~(2+)的陷阱能级对余辉发光起主导作用;当Ca~(2+)掺杂浓度高于0.8%时,Eu~(2+)取代Ca~(2+)离子陷阱能级在余辉发光中起主导作用。  相似文献   

13.
采用共沉淀法制备了Eu~(3+)掺杂Na_(0.45)La_(3.16)W_5O_(20)红色荧光粉,利用XRD、荧光光谱等方法对荧光粉的组成结构及发光性能进行了表征。结果表明,Na_(0.45)La_(3.16)W_5O_(20):Eu~(3+)荧光粉在612nm波长光监测下的激发光谱是由一宽带和系列锐峰组成,其最强激发峰位于蓝光465nm处,这与目前被广泛使用的蓝光LED芯片的输出波长以及商业化生产的460nm光源相匹配。该荧光粉可以被465nm蓝光有效激发,得到614nm处Eu~(3+)非常强的5D0→7F2电偶极跃迁发射峰,是一种能够较好应用在近紫外激发的白光LED用红色荧光粉材料。  相似文献   

14.
Sr_3Al_2O_6:0.05Eu~(3+)荧光粉的制备及光谱性质   总被引:1,自引:0,他引:1  
《化工设计通讯》2017,(7):150-151
用高温固相反应法合成了Sr_3Al_2O_6:0.05Eu~(3+)红光荧光粉,研究了样品的发光性质。在紫外光和近紫外光激发下,样品的发射光谱为Eu~(3+)的~5D_0→~7F_J(J=0,1,2,3,4)特征发射组成。荧光粉的激发光谱由宽带峰和锐峰组成。其中宽带峰是位于紫外区的O~2→Eu~(3+)的电荷迁移跃迁,锐峰是位于近紫外和可见光区的Eu~(3+)的f-f跃迁吸收。Sr_3Al_2O_6:Eu~(3+)是一种适于紫外光激发的红光荧光粉。  相似文献   

15.
采用溶胶-凝胶法制备了系列Eu~(3+)激活的红色荧光粉Ca_8Mg(SiO_4)_4Cl_2:Eu~(3+)。通过X射线粉末衍射、环境扫描电子显微镜和荧光光谱等对样品进行了表征,研究了Eu~(3+)掺杂量、添加不同电荷补偿剂(Li+、Na+、K+)对样品发光强度的影响。结果表明:该系列荧光粉能被393 nm的近紫外光有效激发,发射出波长为615 nm的红光;Eu~(3+)的最佳掺杂量为3%(摩尔分数),添加电荷补偿剂Na+可以显著提高其荧光强度。经计算,Ca_8Mg(SiO_4)_4Cl2:3%Eu~(3+)样品的色坐标为(x=0.641,y=0.358),位于1931-色度图的红光区域。  相似文献   

16.
采用共沉淀法制备了Eu~(3+)掺杂α-Zn_3(PO_4)_2基红色荧光粉,利用XRD和荧光光谱对其晶体结构、发光性能进行了研究。结果表明,样品为纯α-Zn3(PO4)2,晶相为单斜相。样品在612nm波长光监测下得到的激发光谱图主要由一宽峰和一系列尖峰组成,其中396nm处的激发峰强度最大,这说明此荧光粉可被商业化生产的蓝光InGaN LED芯片有效激发。样品在396nm近紫外光激发下,在593nm和612nm处表现出较强的发射峰,分别对应于Eu3+的5D0→7F1磁偶极跃迁和5D0→7F2电偶极跃迁。  相似文献   

17.
采用液相沉淀法合成了钆单掺杂、铕单掺杂、钆-铕共掺杂的硅酸锶发光材料。用X-射线衍射(XRD)对其结构表征。利用荧光光谱(PL)方法对合成的样品进行发光性能表征。研究结果表明:在250nm紫外光为激发波长时,Eu~(3+)单掺杂Sr_2SiO_4∶0.04Eu~(3+)的发光光谱出现Eu~(3+)的5D0→7F1(584nm)、5D0→7F2(614nm)、5D0→7F3(626nm)跃迁发光峰,钆-铕共掺杂Sr_2SiO_4∶x Gd3+,0.04Eu~(3+)发光体系中,主要表现为Eu~(3+)离子的特征发射。探讨了在硅酸锶发光体中Gd~(3+)→Eu~(3+)能量传递的机理,主要为电偶极-电偶极相互作用。当改变Eu~(3+)离子的掺杂浓度时,样品表现为Eu~(3+)离子的特征发射,此时材料发橙色光。保持Gd~(3+)、Eu~(3+)离子掺杂浓度不变,K+作为电荷补偿剂,对材料发光强度影响很小。  相似文献   

18.
采用高温固相法,通过控制反应温度和Eu~(3+)掺杂量,制备Ba Al_2O_4:Eu直接白色荧光粉。以电荷补偿模型为基础讨论了自还原机理。当合成温度为1 200℃、Eu~(3+)掺杂量为12%(摩尔分数)时,荧光粉颜色趋近于白光,色坐标位于(0.36,0.38)。通过X射线光电子能谱、发射和激发光谱以及漫反射光谱,研究了Ba Al_2O_4:Eu荧光粉的发光性能。结果表明:荧光粉中存在2个发光中心,分别与Ba的2种格位相对应。Eu2+和Eu~(3+)共存于基质中,说明Eu~(3+)在空气中发生自还原反应。主峰位于500 nm处的发射宽谱符合Eu2+的4f 65d–4f 7跃迁,596、619、655以及709 nm处的发射峰分别对应Eu~(3+)的4f–4f中5d0–7fJ(J=1,2,3,4)特征发射跃迁,发射峰以619 nm处的5d0–7f2电偶极跃迁为主。  相似文献   

19.
采用高温固相法合成了NaBa_(1-x)PO_4:xEu~(3+)系列橙红色荧光粉。用X射线衍射、扫描电子显微镜、荧光光谱以及色坐标等手段对荧光粉的晶体结构和发光性能进行表征;考察了Eu~(3+)的掺杂摩尔量对荧光粉的晶体结构和发光性能的影响。结果表明:Eu~(3+)的掺杂并没有改变荧光粉的晶体类型,但是导致了晶格收缩,其基质主相是六方晶系的NaBaPO_4。在393 nm近紫外光激发下,最强发射峰和次强发射峰分别位于红光616 nm和橙光591 nm附近,分别属于Eu~(3+)的~5D_0→~7F_2和~5D_0→~7F_1特征跃迁。Eu~(3+)的掺杂量为0.20 mol时荧光粉的发射峰强度最大。Eu~(3+)的光谱性质及其占据基质晶格中Ba(Ⅱ)和Ba(Ⅰ)位点的比例随Eu~(3+)掺杂量的变化而变化,改变Eu~(3+)的掺杂量可以有效调节荧光粉发射光谱中的红、橙光比例。其中荧光粉NaBa_(0.80)PO_4:0.20Eu~(3+)的性能优异,适合与近紫外LED芯片相匹配发光。  相似文献   

20.
采用微乳液法合成了Y_2SiO_5∶Eu~(3+)系列荧光粉。利用XRD、扫描电镜(SEM)、光电子能谱(EDS)、荧光光谱、色坐标等研究了所制备荧光粉的结构、形貌和发光性能。光电子能谱数据验证了合成样品的离子掺杂量。荧光光谱测试表明,Y_2SiO_5∶Eu~(3+)监测光谱呈现200nm~300nm的宽带吸收峰和Eu3+的系列吸收峰。在253nm紫外光激发下,Y_2SiO_5∶Eu~(3+)材料的发射光谱为一个多峰谱,主峰分别为5D0→7F1(591nm)、5D0→7F2(616nm)的发光峰。当Eu3+掺杂物质的量大于24%时,出现了浓度猝灭现象。通过色坐标图可知,当Eu3+掺杂量为24%时,荧光粉的色坐标(0.503,0.366)与标准的红光色坐标接近,表明Y_2SiO_5∶Eu~(3+)是很好的近紫外光激发下的红色荧光粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号